Problem 18:
Is the following language regular? \(L = \{ xwx^R : x, w \in \{0, 1\}^+ \} \).

I claim that \(L \) is regular, as it is the language of a regular expression. By Kleene’s Theorem, the language of a regular expression is a regular language.

Consider the following regular expression: \(R = (0\{0, 1\}^+0) \cup (1\{0, 1\}^+1) \).

I claim that \(L \) is the language of \(R \).
In other words, I claim that \(L = L(R) \), the language of \(R \), is equal to \(L \).
To prove that \(L(R) = L \), we will use set equality.
We will first prove that \(L(R) \subseteq L \), and then prove that \(L \subseteq L(R) \).

\(L(R) \subseteq L \):
Let \(y \) be some word in \(L(R) \).
Then \(y = ava \), for some letter \(a \) where either \(a = 0 \) or \(a = 1 \), and some word \(v \in \{0, 1\}^+ \).
Construct words \(x \) and \(w \), such that \(x = a \) and \(w = v \).
Since \(|x| = 1 \), \(x = x^R \).
Then \(y = xwx^R \), and \(x, w \in \{0, 1\}^+ \). So every \(y \) is in \(L \), by the definition of \(L \).
Therefore, \(L(R) \subseteq L \).

\(L \subseteq L(R) \):
Let \(z \) be some word in \(L \).
By definition of \(L \), \(z = xwx^R \), where \(x, w \in \{0, 1\}^+ \).
Since \(x \neq \epsilon \) by definition, let \(x = ax' \), where \(a \) is the first letter of \(x \) (either 0 or 1).
For any possible \(x' \), we have that \(x' \in \{0, 1\}^* \).
Then \(z = xwx^R = ax'w(x')^Ra = a\{0, 1\}^*\{0, 1\}^+\{0, 1\}^*a = a\{0, 1\}^+a \).
\(R \) clearly accepts every possible \(z \), whether \(a = 0 \) or \(a = 1 \).
Therefore, \(L \subseteq L(R) \).

Since \(L(R) \subseteq L \), and \(L \subseteq L(R) \), it must be that \(L = L(R) \).
\(L(R) \) is regular by Kleene’s Theorem. Therefore, \(L \) is a regular language. \(\square \)