The regular language \(\Sigma^* \) where the alphabet is \(\Sigma = \{0, 1\} \) is not bounded. Suppose, for a contradiction, that \(\Sigma^* \) is bounded.

Let \(w_1, w_2, \ldots, w_n \) be a finite number of words such that \(\Sigma^* \subseteq w_1^* \ldots w_n^* \). Suppose \(w_i \neq \epsilon \) for \(1 \leq i \leq n \) since any empty members may simply be removed without changing the language \(w_1^* \ldots w_n^* \). Count the number of words of a given length \(x \) in each language.

In \(\Sigma^* \) there are \(2^x \) words of length \(x \).

Any word in \(w_1^* \ldots w_n^* \) may be represented in the form of \(w_1^{a_1} \ldots w_n^{a_n} \) for non-negative integers \(a_1, \ldots, a_n \). Since the length of every base \(w_i \), \(1 \leq i \leq n \) is at least 1, the exponent \(a_i \) is at most \(x \), so \(0 \leq a_i \leq x \), so there are at most \(x + 1 \) choices for each exponent \(a_i \). Since there are \(n \) exponents, the total number of words of length \(x \) in \(w_1^* \ldots w_n^* \) is at most \((x + 1)^n \).

Since \(2^x \) is exponential in \(x \) and \((x + 1)^n \) is polynomial in \(x \), there exists an \(x \) such that \(2^x > (x + 1)^n \) for which there must then be a word \(w \) of length \(x \) such that \(w \in \Sigma^* \) and \(w \notin w_1^* \ldots w_n^* \), which contradicts \(\Sigma^* \subseteq w_1^* \ldots w_n^* \).

Therefore, by contradiction \(\Sigma^* \) is not bounded.