29. Two automata M_1, M_2 over the same input alphabet are *isomorphic* if there is some permutation of the names of the states that changes M_1 into M_2. Show that two minimal NFAs accepting the same language are not necessarily isomorphic.

Consider the regular language L defined by 00^* over $\Sigma = \{0\}$, with two NFAs that accept the language $M_1 = (Q_1, \Sigma, \delta_1, p_1, F_1), M_2 = (Q_2, \Sigma, \delta_2, p_2, F_2)$ as follows:

- $Q_1 = \{p_1, q_1\}$
- $F_1 = \{q_1\}$
- $\delta_1(p_1, 0) = \{p_1, q_1\}$
- $\delta_1(q_1, 0) = \{q_1\}$

- $Q_2 = \{p_2, q_2\}$
- $F_2 = \{q_2\}$
- $\delta_2(p_2, 0) = \{q_2\}$
- $\delta_2(q_2, 0) = \{q_2\}$

So M_1 appears as so:

```
\[
\begin{array}{c}
\text{start} \\
\rightarrow \quad p_1 \\
\quad \quad 0 \\
\quad \quad q_1 \\
\end{array}
\]
```

which accepts L because we can take any number of zeros, followed by one zero (0^*0, which is the same as 00^*). M_2 appears as so:

```
\[
\begin{array}{c}
\text{start} \\
\rightarrow \quad p_1 \\
\quad \quad 0 \\
\quad \quad q_1 \\
\end{array}
\]
```

which accepts one zero followed by any number of zeros (00^*).

If we were to construct a one-state NFA accepting L, either:

- The start state would be an accepting state, in which case the NFA would accept ε (which is not in L), or

- The start state would be an accepting state, in which case there would be no accepting states. So the NFA would accept nothing.

Therefore a two-state NFA for L, if it exists, is minimal. Specifically, M_1 and M_2 are minimal.

Finally, p_1 and p_2 start states do not have the same number of transitions. Since the start states must be mapped to each other in an isomorphism, M_1 and M_2 are not isomorphic. □