Q29. Let M be an NFA. Show that the set of all strings in $L(M)$ having exactly one accepting path is a regular language.

SOLUTION

Set $M = (Q, \Sigma, \delta, q_0, F)$ and let N_a be the incidence matrix corresponding to the transitions on symbol $a \in \Sigma$.

Define a new operation \cdot_p on matrices which behaves like ordinary matrix multiplication, except if an entry in the resulting matrix would be ≥ 2, set it to 2. We make this limitation so that we have a finite number of states in the new DFA that we define.

Define a new DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ which will recognize the strings of $L(M)$ that have exactly one accepting path. Set

\[Q' = \{ A : A \text{ is an } n \times n \text{ matrix of elements } 0, 1, 2 \} \]
\[\delta'(A, a) = A \cdot_p N_a \]
\[q'_0 = I \]
\[F' = \{ A : u \cdot_p A \cdot_p v \} \]

where n is the number of states in M and I is the $n \times n$ identity matrix. Additionally, u is the n length vector $[1, 0, ..., 0]$ and v is the n length vector where the i-th entry is 1 if $q_i \in F$ and 0 otherwise.

Each matrix A is some N_x for $x \in \Sigma^*$ and represents the number of paths from q_i to q_j upon reading input x. The representation of 0 and 1 path is unchanged, and if the number of paths is ≥ 2, then the corresponding entry in A will be 2. Then we limit F' to those matrices which represent a single path from a start state to an accepting state.

Then we need to ensure that $(AB)[i, j] = 1$ under ordinary matrix multiplication if and only if $(A \cdot_p B)[i, j] = 1$. The forward direction is easy, since the definition of \cdot_p does not modify a result of 1. For the backward direction assume that $(A \cdot_p B)[i, j] = 1$ and assume towards contradiction that $(AB)[i, j] \neq 1$. Then in case 1, $(AB)[i, j] = 0$ and $(A \cdot_p B)[i, j]$ should be 0, a contradiction. In case 2, $(AB)[i, j] \geq 2$ so $(A \cdot_p B)[i, j]$ should be 2, a contradiction.

Then we have that an input string $x \in L(M')$ iff M has a single accepting path for x, and so the language in question is regular.