Lemma \[\mu(\overline{x}) = \overline{\mu(x)} \]

Proof: induction on \(|x|\)

Base case: \(\mu(\overline{o}) = \mu(1) = 0 \overline{1} = \overline{\mu(o)} \)
 Similar for \(1\)

Induction: let \(x = ax' \)
 \[\mu(\overline{ax'}) = \mu(\overline{a}) \mu(\overline{x'}) \]
 by definition of morphism
 \[= \frac{\mu(a)}{\overline{\mu(x)}} \]
 by base case
 and inductive hypothesis

Claim \[\mu^n(a) = \mu^{n-1}(a) \overline{\mu^{n-1}(a)}, \quad n \geq 2 \]

Proof: induction on \(n\)

Base case: \(\mu^2(o) = 0110 = 0(1)\overline{0(1)} \)
 Similar for \(1\)

Induction: \[\mu^n(a) = \mu(\mu^{n-1}(a)) \]
 \[= \mu(\mu^{n-2}(a) \overline{\mu^{n-2}(a)}) \]
 by inductive hypothesis
 \[= \mu(\mu^{n-2}(a)) \mu(\overline{\mu^{n-2}(a)}) \]
 by definition of morphism
 \[= \mu(\mu^{n-2}(a)) \mu(\mu^{n-2}(\overline{a})) \]
 by Lemma
 \[= \mu^{n-1}(a) \overline{\mu^{n-1}(a)} \]
 by Lemma

Suppose \(x \) is a subword of \(\overline{x} \) and
\(x \) occurs in finitely many positions of \(\omega \).

Suppose the last occurrence of \(x \) in \(\mu^n(o) \).

Then \(\mu^{n+2}(o) = \mu^{n+1}(o) \mu^{n+1}(o) \cong \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \).

\(\mu^{n+2}(o) = \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \).

And \(x \) occurs twice in \(\mu^{n+2}(o) \), a contradiction.

So, \(\mu \) is recurrent.

Simpler proof:

\[\mu^{n+2}(o) = \mu^n(\mu^n(o)) = \mu^n(0110) = \mu^n(o) \mu^n(1) \mu^n(1) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \mu^n(o) \]

And \(\mu^{n+2} \) has 2 occurrences of \(x \), a contradiction.