Theorem 1. Let \(x \) and \(y \) be two non-empty antipalindromes. Then \(xy \) is an antipalindrome if and only if there exist a non-empty word \(w \) and integers \(n, m \geq 1 \) such that \(x = w^n \) and \(y = w^m \).

Proof. Suppose \(x \) and \(y \) are two non-empty antipalindromes.

By definition, \(xy \) is an antipalindrome if and only if

\[
xy = (xy)^R \\
\iff \overline{x} y^R = y^R \overline{x} \\
\iff \overline{y} x = xy \\
\iff yx = xy
\]

By the 2nd Lyndon-Schutzenberger theorem, this occurs if and only if there exist a non-empty word \(w \), and integers \(n, m \geq 1 \) such that \(x = w^n \) and \(y = w^m \). \(\square \)