30. What are the Myhill-Nerode equivalence classes of the language \(\{a^m b^n : 1 \leq m \leq n \} \)?

\(L = \{a^m b^n : 1 \leq m \leq n \} \) is not a regular language, so there is an infinite number of equivalence classes for it. Specifically, they are \(\{[\epsilon], [a], [a^2], ..., [a^n], [a^n b], ..., [a^2 b], [a b], [b] \} \), where \(n \) is arbitrarily large. See below:

![Transition diagram](image)

All transitions not pictured lead to the failure state, \([b] \).

To prove that these are all unique equivalence classes, we provide for each pair of equivalence classes \(x, y \) a word \(z \) such that \(xz \in L \) but \(yz \notin L \).

For all pairs with the form \(a^i \) and \(a^j \), \(1 \leq i < j \), we take \(z = b^j \). In this case, \(xz = a^i b^j \in L \), but \(yz = a^i b^i \notin L \).

For all pairs with the form \(a^i b \) and \(a^j b \), \(1 \leq i < j \), we take \(z = b^{i-1} \). In this case, \(xz = a^i b^i \in L \), but \(yz = a^i b^i \notin L \).

For all pairs with the form \(a^i \) and \(a^i b \), we take \(z = ab^{i+1} \). In this case, \(xz = a^{i+1} b^{i+1} \in L \), but \(yz = a^i b a b^{i+1} \notin L \).

For all pairs where one element \((x) \) is the equivalence class of the empty string, we can simply take \(z = ab \) so that \(xz = ab \in L \), but any \(yz \) would be of the incorrect form, or would have \(m > n \), and would thus not be in \(L \).

Similarly, for pairs where one element \((y) \) is the equivalence class of the failure state \([b] \), we could find a \(z \) such that \(xz \in L \), whereas any string appended to \([b] \) would not be in the language.

After all this, we can see that these are all the unique equivalence classes of \(L \), and that there is an infinite number of them.