32. What are the Myhill-Nerode equivalence classes for the language \(\{a^{2^n} : n \geq 0\} \)

solution

Any word \(a^x \) is in a class with the unique element.

To prove this, we need to show there exists no \(y \) s.t. \(x + z = 2^n \) for some \(n \) if \(y + z = 2^m \) for some \(m \).

If there exists such \(y \),

WLOG, let \(y < x \).

\[\forall n \geq \log_2 x, \exists z, \exists m, \ x + z = 2^n, y + z = 2^m \]

\[\Rightarrow \forall n \geq \log_2 x, \exists m < n, \ x - y = 2^n - 2^m \]

Let \(n = n_0 = \lceil \log_2 (x - y) \rceil + 1 \), then \(2^{n_0} - 2^m \geq 2^{n_0 - 1} \neq x - y \).

Contradiction.