Solution:
To solve this question, we want to find a specific language L and the size of its minimal CFG’s, then show there are two minimal CFG’s for L.

Consider $L = a^*$. Then any CFG for L has size at least 2, because we need a start variable S and at least one a on the right-hand side. Now we consider all CFGs for L that have size 3.

Note that we cannot generate L with only one production. With $S \rightarrow Sa$ or $S \rightarrow aS$ or $S \rightarrow SS$ alone, the CFG does not generate any language. And with $S \rightarrow aa$ alone, the CFG generates a finite language, which cannot be L. So we need another production at least, say $X \rightarrow \gamma$, where X can be the start variable S or a new variable.

Also, if there are at least three productions, then the right-hand sides will have to be all ϵ’s, which do not generate L. So now we only consider CFGs for L that have size 3 and exactly two productions.

Suppose there is a size-3 CFG, G, for L that has at least two productions:

$$S \rightarrow \beta$$
$$X \rightarrow \gamma$$

then β and γ have a total size of 1 and contain at least one a, which leads to two cases: (1) $\beta = a$ and $\gamma = \epsilon$; (2) $\beta = \epsilon$ and $\gamma = a$. Note we may insert more ϵ’s to the right-hand sides to form different productions, but it would not change the language generated. It can be verified that in neither of the two cases G generates L.

The CFG associated with the following productions has size 4, and this CFG generates L:

$$S \rightarrow \epsilon$$
$$S \rightarrow aS$$

So the minimal size is 4. We can swap a and S on the right-hand side of the second production to obtain a different CFG of the same minimal size that aslo generates L. Thus, the minimal CFG’s for L are not unique.