1. Show that for every infinite string \(w \) there must be some letter \(a \) and some finite string \(x \) such that \(axa \) appears infinitely often as a subword of \(w \). Furthermore, such an \(x \) exists with \(|x| \leq |\Sigma| - 1 \) where \(\Sigma \) is the alphabet.

Solution:

We can divide the infinite word \(w \) into subwords of size \(k + 1 \), i.e. we write

\[
w = w_1 w_2 \ldots
\]

where \(|w_i| = k + 1 \) for all \(i \geq 1 \).

The sequence \(w_1, w_2, \ldots \) is infinite since otherwise \(w \) consists of finitely many words of finite length and so it will have finite length, contradicting its choice.

Let \(S \) be the set of words of length \(k + 1 \) over the alphabet of \(\Sigma \), and we have \(|S| = |\Sigma|^{k+1} = k^{k+1} \). Note that for every \(i \geq 1 \) we have \(|w_i| = k + 1 \) and the fact that \(w_i \) is a string over the alphabet \(\Sigma \) implies \(w_i \in S \). Hence, by the (infinite) Pigeonhole Principle there must be a word \(v \in S \) that appears infinitely many times in the sequence \((w_1, w_2, \ldots) \). Therefore, it appears infinitely many times in \(w \).

Then, since \(|v| = k + 1 \), by the Pigeonhole Principle, there is a letter \(a \in \Sigma \) that appears at least twice in \(v \). Therefore, we can write \(v = v'(axa)v'' \) for \(x, v', v'' \in \Sigma^* \) and so \(axa \) is a subword of \(v \). Since \(v \) appears infinitely many times in \(w \), we have that \(axa \) appears infinitely many times in \(w \). We also have

\[
2 + |x| = |axa| \leq |v| = k + 1 = |\Sigma| + 1
\]

which implies \(|x| \leq |\Sigma| - 1 \). This completes the proof.