Question 7

Proof. Define our string to be $S = \prod a_n$ where $a_n = 10^n$. It’s quite easy to see that our string has no infinite power. Since if S contains an infinite power of k with length n, it must contain at least one 1. Later we can look at a_{2n} which has $2n$ 0s, there is no way you can represent fit k as a substring within the $2n$ zeroes. Then we claim S has a square at every point. Pick any letter x. X is in some a_n, and there are 3 cases.

Case 1: x is a 1, then take a_n and the first $n+1$ letters of a_{n+1}, and we have a square. This is $(10^n)^2$.

Case 2: x is a 0, followed by 0. 00 is our square.

Case 3: x is a 0 followed by 1. then take the following $2n+4$ letters. This is $(010^n)^2$, another square. Thus we show x has a square starting at it in all 3 cases.