Recall that a word x is a palindrome if $x = x^R$, where x^R denotes the reversal of x.

For a word $x \in \{0,1\}^*$, let \overline{x} denote the word obtained by changing each 0 to 1 and vice versa. Call a word x an antipalindrome if $\overline{x} = x^R$. Thus, for example, 001011 is an antipalindrome.

Recall that two words x, y are conjugates if there are words u, v such that $x = uv$ and $y = vu$.

1. Show that two words x, y are conjugates iff there exists a word t such that $xt = ty$. Furthermore, if t exists then we can always find one with $|t| \leq |x|$.

2. A follow-up: show that two words x, y are conjugates iff there exists a word t such that $xt = ty$ or a word s such that $sx = ys$. Furthermore argue that there exists such an s or a t of length $\leq |x|/2$.

3. Is it possible to avoid the pattern xx', where x' is a conjugate of x, over a 3-letter alphabet? (Remember that “avoid the pattern” means “does there exist an infinite word containing no occurrences of the pattern as a subword?”)

4. Can you construct an aperiodic infinite binary word in which there is a square beginning at every position? Here “aperiodic” means “not ultimately periodic”.

5. Prove that a string x is an antipalindrome if and only if there exists y such that $x = y\overline{y}^R$.

6. Is the Thue-Morse word t recurrent? That is, if x is a subword of t, must x occur at infinitely many different positions of t?

7. When is the concatenation of two antipalindromes an antipalindrome? Give necessary and sufficient conditions. Possible strategy: do some experiments.

8. When is the concatenation of two antipalindromes a palindrome? Give necessary and sufficient conditions. Possible strategy: do some experiments.