1. Define
\[\text{min}(L) = \{ x \in L : \text{no proper prefix of } x \text{ is in } L \} \].
Find an expression for \(\text{min}(L) \) in terms of operations like quotient, complement, etc. Conclude that if \(L \) is regular, so is \(\text{min}(L) \).

2. Suppose \(L \) is regular. Is the language
\[\{ xz : \text{there exists } y \text{ such that } xyz \in L \text{ and } |x| = |y| = |z| \} \]
regular?

3. Consider the following transformation on languages:
\[\sqrt{L} = \{ x \in \Sigma^* : \text{there exists } y \in \Sigma^* \text{ such that } |y| = |x|^2 \text{ and } xy \in L \} \].
Show that if \(L \) is regular, then so is \(\sqrt{L} \). Hint: use the boolean matrix approach and follow the general idea in the proof of \(\log(L) \) we just did in class.

4. Let \(M \) be an NFA. Show that the set of all strings in \(L(M) \) having exactly one accepting path is a regular language. Hint: instead of using Boolean matrix multiplication, use ordinary matrix multiplication to compute the number of accepting paths.

5. Show that if \(M \) is an \(n \)-state DFA, and accepts at least one string that is a palindrome, then it accepts a palindrome of length \(< 2n^2 \).

6. Let \(L_1, L_2 \) be regular languages with \(L_2 - L_1 \) infinite. Show there exists a regular language \(L \) with \(L_1 \subseteq L \subseteq L_2 \) with both \(L_2 - L \) and \(L - L_1 \) infinite. (Here \(A - B \) is set difference, defined to be those strings in \(A \) but not in \(B \).)

7. Let \(L \) be a regular language, and let \(s \) be a substitution by regular languages. Must \(s^{-1}(L) = \{ x : s(x) \subseteq L \} \) be regular?