Here is a list of open problems. Solve any one of these, and get an automatic 100 for the course! Note that some problems listed here include an update indicating that they are no longer open. Naturally, solving any of those problems will not suffice.

Let P_{2} = { *x* ∈ {0,1}^{*} : *x* is primitive }.
It is not hard, and makes a good exercise, to prove that language
P_{2} is not regular. However, the following problem is open:
**Is P _{2} context-free?**

Most people believe the answer is no, but no one has a proof. This
very hard problem
has been open for about 25 years. (There's even a new 500-page book
about this problem,
*Context-free languages and primitive words*, by Dömösi
and Ito.)
By contrast, it is possible to prove that the language of non-squares
*is* context-free. This also makes a good exercise!

**Can Q
be expressed in terms of known constants? Is it irrational?
Transcendental?**

(a) Does every squarefree finite word appear as a subword (factor) of
**x**?

(b) Do the letters occur with limiting frequencies in **x**, and if so,
what are the frequencies? (Limiting frequencies are defined below in problem 10.)

*Update, March 22 2012*: solved! by Slovak computer scientist
Galina Jirásková. The bound is
2^{Θ(n log n)}.

*Update, 2015*: Solved!

(It is known that it is possible to avoid *three* consecutive
blocks of the same length and same sum.
See this paper.)

Prove or disprove that the limiting frequency of the symbol 1 in
*K* exists and is equal to 1/2. The definition of limiting frequency is
the limit
lim_{n → ∞} | *K*[1..n] |_{1}/*n*.

Is there a significantly faster algorithm? For example, can we
find all the strings accepted by an
*n*-state unary acyclic NFA in *O*(*n*^{2}) time?

*Tentatively solved!* Curtis Bright has found that for
i = 8005, the number is a "probable prime". That is to say, it
passed about 12 Miller-Rabin tests. It remains to complete a formal
proof for this exponent.

There is an old manuscript of Sándor Horváth that claims to solve this problem, but to my knowledge it has never been published, and there seem to be gaps in the proof.

In our example, we get 33232, then 332322, then 3323222, then 33232223, then 332322231.

Conjecture: this process always terminates with 1. For more information, see the paper here.

Is there a positive integer *n* ≥ 2 and nonempty words
*u*_{1},
*u*_{2}, ...,
*u*_{n}
such that both of the following equalities hold:

(*u*_{1} *u*_{2} ... *u*_{n})^{2} = *u*_{1}^{2}
*u*_{2}^{2} ...
*u*_{n}^{2}

(*u*_{1} *u*_{2} ... *u*_{n})^{3} = *u*_{1}^{3}
*u*_{2}^{3} ...
*u*_{n}^{3}

and furthermore for at least one pair of indices
*i, j* we have *u*_{i} *u*_{j} ≠
*u*_{j} *u*_{i}?

If the "does there exist a pair" is replaced by "is it true that for all pairs", then the answer is known to be decidable.

Is π or e or log 2 or γ (Euler's constant)
(*b*, *k*)-automatic?

There is a more general question here, which I mentioned in class: suppose you apply a finite-state transducer to **t**
and you get something, say **x**, that is not ultimately periodic.
Can you always apply a finite-state transducer to **x** to get **t**
back again? Nobody knows.

What is its complexity? I can prove it is PSPACE-hard, but is it in PSPACE? I offer $100 for this problem. {\it Solved! By Marek Szykula}

Same question for bases 9 and 10. For base 10 this is sequence A130448 in the Online Encyclopedia of Integer Sequences.