All answers should be accompanied by proofs. In all problems the underlying alphabet \(\Sigma \) is assumed to be finite.

1. [10 marks] Let \(h : \Sigma^* \to \Sigma^* \) be a morphism, and let \(L \subseteq \Sigma^* \) be a language. Define

\[
h^{-*}(L) = \bigcup_{i \geq 0} h^{-i}(L),
\]

where by \(h^{-i}(L) \) we mean \(h^{-1}(h^{-1}(\cdots h^{-1}(L) \cdots)) \). Note that \(h^{-0}(L) = L \). Prove that if \(L \) is regular, so is \(h^{-*}(L) \).

2. [10 marks] Let \(L \) be a language, and define

\[
bord(L) = \{ u \in \Sigma^+ : \exists x \in \Sigma^* \text{ such that } uxu \in L \}.
\]

(a) Show, by explicitly constructing a finite automaton, that if \(L \) is regular then so is \(bord(L) \).

(b) Use your proof in (a) to show that there exists a function \(f(n) \) such that if an \(n \)-state DFA \(M \) accepts at least one bordered word, then \(M \) accepts some bordered word of length at most \(f(n) \). Be as explicit as possible in defining your \(f \).

3. [10 marks] For each \(n \geq 1 \), consider the language \(L_n \) defined over the alphabet \(\Sigma_n \cup \{\#\} \), where \(\Sigma_n = \{1, 2, 3, \ldots, n\} \), as follows:

\[
L_n = \{ \#w\#k\#w[k]\# : |w| \geq n \text{ and } w \in \Sigma_n^* \text{ and } 1 \leq k \leq n \}.
\]

Thus, for example, the language \(L_3 \) contains the strings \#3123\#2\#1\# and \#1111\#2\#1, but not the string \#123\#3\#1\#.

Show that \(L_n \) can be accepted by a 2DFA of \(O(n) \) states. Explain your 2DFA in words, justify it in words, and draw it for \(n = 4 \), but a complete formal proof is not necessary.