1. [10 marks] Describe, with proof, all the equivalence classes for the Myhill-Nerode equivalence relation on the language \(L = \{a^n b^n c^n : n \geq 1\} \).

2. [10 marks] Let \(L \) be regular. Show that the number of final states in any DFA accepting \(L \) is at least the number of final states in the minimal DFA for \(L \).

3. [10 marks] Let \(L = \{x \in \Sigma^* : x = x^R\} \), the language of palindromes over the alphabet \(\Sigma = \{0, 1\} \). Show that every word of \(\Sigma^* \) is in a Myhill-Nerode equivalence class by itself.