Lecture 21. Unrestricted Grammars

November 24, 2009
University of Waterloo
Meng He
Definitions

- Both the left and right side of a production can be any string of variables and terminals
 - Left hand side must be nonempty
- More formally, a 4-tuple \((V, \Sigma, P, S)\) in which:
 - A production is of the form \(\alpha \rightarrow \beta\), with \(\alpha \in (V \cup \Sigma)^+\) and \(\beta \in (V \cup \Sigma)^*\)
- **Sentential form, derivation, direct derivation, \(L(G)\):** defined in the same way as CFG’s
An Example

- An unrestricted grammar for Language \(\{a_i^2: i \geq 1\} \)

 \[

 \begin{align*}
 S & \rightarrow \text{BRAE} \\
 B & \rightarrow \text{BRAA} \\
 \text{RA} & \rightarrow aAR \\
 \text{Ra} & \rightarrow aR \\
 \text{RE} & \rightarrow E \\
 B & \rightarrow X \\
 \text{XA} & \rightarrow X \\
 Xa & \rightarrow aX \\
 XE & \rightarrow \epsilon
 \end{align*}
 \]

- Key idea: \(1 + 3 + 5 + \ldots + (2n-1) = n^2 \)
A Quick Review of Turing Machines

- A **TM** is a computing device equipped with an unbounded tape divided into individual cells
 - Cells are numbered 0, 1, 2, ...
 - Initially, input is on cell 1, 2, ..., n, and cells 0, n+1, n+2, ... have a distinguished blank symbol **B**
 - Based on the current state and symbol being scanned, a TM can change the state, rewrite the symbol, move left, right or stay stationary
 - A TM accepts its input if, when it starts by scanning cell 0, eventually enters the halting state (not necessary reading all its input)

- Formally, a TM is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, h)\)
 - \(\Sigma \subseteq \Gamma\), \(B \not\in \Sigma, B \in \Gamma\)
 - \(\delta\): A partial function from \(Q \times \Gamma\) to \(Q \times \Gamma \times \{L, R, S\}\)
 - Configuration: \(wqx\)

- Recursively enumerable languages and recursive languages
Let $G = (V, \Sigma, P, S)$ be an unrestricted grammar. Then $L(G)$ is recursively enumerable.

We prove this by constructing a non-deterministic four-tape TM accepting $L(G)$:

- Tape 1 holds the input w, and will never change.
- Tape 2 holds a sentential form.
- Tape 3 holds the left side of a production.
- Tape 4 holds the corresponding right side.
Let \(L \) be a recursively enumerable language. Then there exists an unrestricted grammar \(G \) such that \(L(G) = L \).

Proof sketch (Let \(M \) be the one-tape TM accepting \(L \))

- Modify \(M \) to get a nondeterministic “language generator” \(M' \)
 1. \(M' \) has two tracks on its tape which is initially blank
 2. Write a nondeterministically-chosen string \(w \in \Sigma \) on track 1.
 3. Copy \(w \) to track 2.
 4. Simulate \(M \) on track 1.
 5. If \(M \) accepts, erase track 1, copy track 2 back to the tape and enter the halting state \(h \). Otherwise, \(M' \) crashes (no next move).

- Create an unrestricted grammar mimicking the computations of \(M' = (Q, \Sigma, \Gamma, \delta, q_0, h) \)