1. [10 marks] Given a graph $G = (V, E)$ a proper colouring assigns colours to the vertices such that for any edge, its endpoints have different colours.

 (a) [5 marks] Give a greedy algorithm to find a proper colouring of G with $\Delta + 1$ colours, where Δ is the maximum vertex degree in G.

 (b) [5 marks] Give an algorithm to find a proper colouring a 3-colourable graph with $O(\sqrt{n})$ colours. **Hint:** Combine the following two ideas. If $\Delta \leq \sqrt{n}$, use part (a). If some vertex v has degree $> \sqrt{n}$, show how to use 3 colours to properly colour $v \cup N(v)$. Here $N(v)$ is the *neighbourhood* of v that consists of all vertices adjacent to v.

 Fact: It is NP-hard to find a proper 4-colouring of a 3-colourable graph.

2. [10 marks] Consider the following optimization problem. Given a set X of positive integers, split X into disjoint subsets A and B such that $A \cup B = X$ and $\max\{\sum A, \sum B\}$ is as small as possible. This problem is NP-hard. Consider the following polynomial-time approximation algorithm: Sort the elements of X in increasing order $x_1 \leq x_2 \leq \cdots \leq x_n$. For $i = 1, \ldots, n$ put x_i into whichever of A or B currently has smaller sum, breaking ties arbitrarily.

 (a) [8 marks] Prove that this approximation algorithm has approximation factor 1.5.

 (b) [2 marks] Give an example to show that this approximation factor is tight.