Recall
- approx. scheme \(\forall \varepsilon > 0 \)
 \[A(I, \varepsilon) \geq (1 - \varepsilon) \text{OPT}(I) \]
for max. problem.

- PTAS - run time poly. in \(n \) for fixed \(\varepsilon \)
- FPTAS - "fully poly. time approx. scheme"
 - run time is poly. in \(n \) and \(\frac{1}{\varepsilon} \)

We've seen PTAS - packing unit squares
 - bin packing.

Today: FPTAS

Knapsack Problem

Given objects \(1 \ldots n \) each with size \(s_i \in \mathbb{N} \) and profit \(p_i \in \mathbb{N} \), given knapsack capacity \(B \)

find \(K \subseteq \{1, \ldots, n\} \), \(\sum s_i \leq B \)

and maximize \(\sum_{i \in K} p_i \)

[decision version] is \text{NP}-complete.

Ex. Show [Subset Sum] reduces to Knapsack - or Partition

A pseudo-polynomial time alg. for Knapsack.

Dynamic Programming:

idea: for each profit sum, find min. size.
subproblems:
Find $S(i, p) = \min_i$ size for subset of items $\{i_1 \cdots i_p\}$
of profit exactly p.

\[p = 1 \cdots n \quad \text{max}_i \pi_i \]

\[P = \text{upper bound on total profit}. \]

Alg.

- Initialize $A, p = 1 \cdots P$, $S(1, p) = \{ s_i \text{ if } P = P_i \}$, ∞ otherwise.
- for $i = 2 \cdots n$
 - for $p = 1 \cdots P$
 - for $i \in \text{set} \quad i \in \text{set} \quad i \in \text{set}$
 - $S'(i, p) = \min \{ S(i-1, p), S(i-1, p-P_i) + s_i \}$
 - return max p such that $S(n, p) \leq B = \max_\text{profit of subset of size } B$.

run time:

\[O(nP) = O(n^2, \max_i \pi_i) \]

pseudo-poly. time — run time depends on P_i's, not on size of P_i's which is $\log(P_i)$ = # bits.

Some NP-complete problems don't have pseudo-poly. time alg's (unless $P = NP$).

- e.g. TSP — still NP-complete with 0-1 weights (= ham cycle)

Two notions of "easy" NP-complete problem

1. a pseudo-poly. time algorithm
2. an FPTAS
An FPTAS for knapsack (use above pseudo-poly. time alg.)

Idea: if p_i's are small (few bits)
then pseudo-poly. time alg. is poly. time $O(n^2 \max_i p_i)$

So, round p_i's to have few bits.

Alg: Given ε (want approx $\ge (1-\varepsilon) \cdot$OPT.)

Given $s_1, \ldots, s_n, p_1, \ldots, p_n, B$.

For each i, let $p'_i \le \left\lfloor \frac{p_i}{\varepsilon} \right\rfloor$ to be chosen.

Run dyn prog. alg. on p'_i — run time $O(n^2 \max_i p'_i)$

Suppose result gives set $K(t) \subseteq \{1, \ldots, n\}$

$K(t)$ is feasible i.e. $\sum_{i \in K(t)} s_i \le B$.

We need to analyze $P(K(t)) = \sum_{i \in K(t)} p_i$

Compared to $P(K^*) = \text{OPT}$

$P_i - t < t p'_i \le P_i$

$\sum_{i \in K(t)} p_i \ge \sum_{i \in K(t)} t p'_i \ge \sum_{i \in K^*} t p'_i \ge \sum_{i \in K^*} (P_i - t) = \sum_{i \in K^*} P_i - t |K^*|$

because $K(t)$ is opt for p'_i

$\ge \text{OPT} - t |K^*| \ge \text{OPT} - t \cdot n = \text{OPT} \left(1 - \frac{t \cdot n}{\text{OPT}}\right)$

note: $\text{OPT} \ge \max_i p_i$

want $\ge \text{OPT} \left(1 - \varepsilon\right)$

so choose t s.t. $\varepsilon = \frac{t \cdot n}{\max_i p_i}$ i.e. $t = \frac{\varepsilon \cdot \max_i p_i}{n}$
Run-time \(O(n^3 \max p_i) \)

\[p_i' = \left(\frac{p_i}{\varepsilon} \right) = \left(\frac{n \cdot p_i}{\varepsilon \cdot \max p_i} \right) \leq \frac{n}{\varepsilon} \]

So run-time \(O(n^3 \cdot \frac{1}{\varepsilon}) \) — FPTAS

Best known alg. has run time \(O(n \log \frac{1}{\varepsilon} + \left(\frac{1}{\varepsilon} \right)^4) \).

Idea: separate into large profit items (use above technique) and small (pack afterwards).

We showed for knapsack: pseudo-polynomial time alg. \(\longrightarrow \) FPTAS.

Not known in general.

But converse true in general:

FPTAS \(\Rightarrow \) pseudo-polynomial time alg.

Thm [Garey & Johnson '78]

If a problem has an FPTAS, (some technical assumptions)

then there’s a pseudo-polynomial time alg.
Status of NP-complete problems w.r.t. approximation

Harder
- $O(\log n)$-factor (Set Cover)
- constant factor (e.g., Vertex Cover, Euclidean TSP)
- PTAS (e.g., packing unit squares, bin-packing)

Easier
- FPTAS (e.g. knapsack)

Positive results - give approx. alg.
Negative results - “hardness”

An easy example:

Polynomial 2-approx for general TSP \Rightarrow P = NP

This was on Assignment 1.

There are also reductions that preserve good approximation examples

- Polynomial k-approx for Ind. Set \Rightarrow polynomial k-approx.
 - for clique - this is easy
- PTAS for Ind. Set \Rightarrow PTAS for Clique - same proof
- PTAS for Ind. Set \Rightarrow PTAS for Max 3-SAT.
 - proof outline in Lecture 15

Lemma constant factor approx for Clique \Rightarrow PTAS for clique

Proof. Suppose we have an alg. that returns a clique of size $\geq \frac{1}{k} \text{OPT}$

Design a PTAS. Input graph G, ε

Want clique of size $\geq (1 - \varepsilon) \text{OPT}$

Idea: “duplicate” G to leverage the $\frac{1}{k}$-approx.
Status of NP-complete problems w.r.t. approximation

Harder
- $O(\log n)$-factor (Set Cover)
- constant factor (e.g., Vertex Cover, Euclidean TSP)
- PTAS (e.g., packing unit squares, bin-packing)

Easier
- FPTAS (e.g., knapsack)

Positive results - give approx. alg.
Negative results - "hardness"

An easy example:
Poly-time 2-approx for general TSP \Rightarrow P = NP
This was on Assignment 1

There are also reductions that preserve good approximation examples
- Poly-time k-approx for Ind. Set \Leftrightarrow poly time k-approx.
 for clique - this is easy
- PTAS for Ind. Set \Leftrightarrow PTAS for Clique - same proof
- PTAS for Ind. Set \Rightarrow PTAS for Max 3-SAT
 - proof outline in Lecture 15
- Constant factor approx for Clique \Rightarrow PTAS for Clique

Breakthrough result 1992
PTAS for Max 3-SAT \Rightarrow P = NP

Thus none of above possible either (unless P = NP)
Lemma constant factor approx for clique \(\Rightarrow \) PTAS for clique

Proof. Suppose we have an alg. that returns a clique of size \(\geq \frac{1}{2} \text{OPT} \) (same proof will work for \(\frac{1}{k} \))

Design a PTAS. Input graph \(G, \varepsilon \)

Want clique of size \(\geq (1-\varepsilon) \text{OPT} \)

Idea: "duplicate" \(G \) to leverage the \(\frac{1}{2} \)-approx.

Define the \(k \)-th power of \(G = (V, E) \), \(G^k \) as follows:

vertices of \(G^k = k \)-tuples \((v_1, \ldots, v_k) \) \(v_i \in V \)

so \(n^k \) vertices

edge \((u_1, \ldots, u_k) \) to \((v_1, \ldots, v_k) \) iff

\(\forall i \; u_i = v_i \; \text{or} \; (u_i, v_i) \in E \)

e.g.

\[
\begin{array}{c}
\text{G1} \\
\text{2} \\
\text{3}
\end{array}
\]

\(G^2 \) has 9 vertices

\((1,1), (1,2), (1,3), (2,1), \ldots \)

Is there edge \(((1,1), (1,2)) \)? \(\text{YES} \)

" " \(((1,1), (1,3)) \)? \(\text{NO} \)

How many edges?
Claim: \(A \) has a clique of size \(t \) iff \(G^k \) has a clique of size \(t^k \).

Furthermore, from a clique of size \(t^k \) in \(G^k \), we can find a clique of size \(t \) in \(G \).

Thus \(\text{OPT}(G^k) = (\text{OPT}(G))^k \).

Plan for PTAS: run the \(\frac{1}{2} \) approx alg. on \(G^k \) for appropriate value of \(k \).

Our approx. alg. gives \(A(G^k) \geq \frac{1}{2} \text{OPT}(G^k) \) in \(G \) we get a clique of size

\[
\left(A(G^k) \right)^{\frac{1}{k}} \geq \left(\frac{1}{2} \text{OPT}(G^k) \right)^{\frac{1}{k}} = \left(\frac{1}{2} \right)^{\frac{1}{k}} \text{OPT}(G)
\]

We want \(\left(\frac{1}{2} \right)^{\frac{1}{k}} \geq (1 - \varepsilon) \)

\[
2^{\frac{1}{k}} \leq \frac{1}{1 - \varepsilon} \quad \frac{1}{k} \leq \log \frac{1}{1 - \varepsilon} \quad k \geq \frac{1}{\log \frac{1}{1 - \varepsilon}}
\]