Status of NP-complete problems w.r.t. approximation

Harder
- $O(\log n)$-factor (Set Cover)
- Constant factor (e.g., Vertex Cover, Euclidean TSP)
- PTAS (e.g., packing unit squares, bin packing)

Easier
- FPTAS (e.g., knapsack)

Positive results - give approx. alg.
Negative results - "hardness"

An easy example:
Poly-time 2-approx for general TSP \Rightarrow P = NP
This is in notes for Lecture 15, and was covered today
There are also reductions that preserve good approximation
examples
- Poly-time k-approx for Ind. Set \Rightarrow poly-time k-approx.
 for clique - on Assign 6
- PTAS for Ind. Set \Rightarrow PTAS for Clique (same pf.)
- Constant factor approx for Clique \Rightarrow PTAS for Clique
 - on current assignment.

Another example:
Thm: PTAS for Ind. Set \Rightarrow PTAS for Max 3-SAT.
Recall:
Max 3-SAT $= (x \lor y \lor z) \land (a \lor z \lor b \lor c) \land \cdots$
Given 3-SAT formula, find truth value assignment maximizing # clauses
satisfied.
Proof of Thm uses standard reduction
3-SAT to Ind. Set.
Recall that reduction
\[C = (x_1 v \overline{x_2} v x_3) \] becomes \(\triangle \)

\[x_1 \quad \overline{x_2} \quad x_3 \]

put edge \((x, \overline{x})\) for all occurrences.

Graph \(G \) with \(3m \) vertices, \(m = \# \) clauses.

- truth value assignment
- satisfies \(k \) clauses

\[\text{maps to} \]

Ind. Set of \(k \) vertices.

in particular \(\text{OPT}_{\text{Max3Sat}}(F) = \text{OPT}_{\text{Ind Set}}(G) \)

and poly-time approx alg for Ind. Set that gives

\[\text{A}_{\text{Ind Set}}(G) \geq \alpha \cdot \text{OPT}_{\text{Ind Set}}(G) \]

implies poly-time approx alg for Max 3-SAT that gives

\[\text{A}_{\text{Max3Sat}}(F) \geq \alpha \cdot \text{OPT}_{\text{Max3Sat}}(F) \]

Then poly-time \((1 + \varepsilon)\)-approx for Vertex Cover

implies poly-time \((1 - 5\varepsilon)\)-approx for Max 3-SAT.

\(\alpha \) PTAS for V.C. \(\Rightarrow P = NP \).

This theorem can be proved somewhat like the one above (a bit harder)
Breakthrough Result 192

PTAS for Max 3-SAT $\implies P = NP$.

Ex. Go through results above to see implications

- e.g. constant factor approx for Clique $\implies P = NP$.

Today - idea of proof of breakthrough result.

- involves new characterization of NP.
Recall

NP - decision problems that can be verified in poly-time
 given a certificate of poly-size.

 e.g. Ham. cycle
 Max 3-SAT.

Think of this as a game between

 Prover P - all powerful, finds a certificate
 Verifier V - computationally limited - poly-time,
 - check certificate.

Generalize

 - allow Verifier to use randomness
 - allow interaction.

Interactive Proof Systems.

Example: Graph Isomorphism.

Given 2 graphs — can you relabel to get same graph.

[Diagram of two graphs showing isomorphism]

Graph Isom. is in NP.

in P? in NP-complete? OPEN.

in co-NP? i.e. can we verify if \(G_1 \not\cong G_2 \) given certificate? not isom.
An interactive proof protocol to verify \(G_1 \not\cong G_2 \)

Verifier:
- pick \(G_1 \) or \(G_2 \) at random
- randomly relabel
- ask Prover — was it \(G_1 \) or \(G_2 \)?

If \(G_1 \not\cong G_2 \) Prover can answer correctly.
If \(G_1 \cong G_2 \) Prover can't do better than \(50\% \) right.

Verifier runs many trials & verifies \(G_1 \not\cong G_2 \) with high prob.

Probabilistically Checkable Proofs

Given a statement (e.g. \(G \) has a Ham. cycle)
- the Prover writes "proof"
- the Verifier is a randomized alg. that "checks" the proof & answers YES or NO

Conditions on correctness
- if statement is TRUE there is a "proof" that makes \(V \) answer YES (always)
- if statement is FALSE then \(V \) must answer NO with Prob \(\geq 3/4 \) no matter what "proof" is given.

Limiting \(V \)'s resouces
- poly. time
- \(O(f(n)) \) random bits
- \(O(g(n)) \) bits of proof.

more restricted proof system
- no rounds
PCP \([f, g] \) — class of decision problems with \textbf{Probabilistically Checkable Proof} where \(V\) uses \(O(f(n))\) random bits and \(O(g(n))\) bits of proof.

\[
\text{PCP}[0, \text{poly}(n)] = \text{NP} \\
\text{PCP}[0, o] = \text{P}
\]

\textbf{Thm} \textit{"PCP theorem" [Arora, Lund, Motwani, Sudan, Szegedy '92]}

\(\text{NP} = \text{PCP}[\log n, 1]\)

\(V\) looks at only \(O(1)\) bits of the proof!

\(V\) uses random bits to choose where to look at the proof as addresses into "proof".

easy direction of proof:

\[
\text{PCP}[\log n, 1] \leq \text{NP} = \text{PCP}[0, \text{poly}(n)]
\]

must eliminate randomness (increase \#bits proof)

Verifier tries all possible random strings of \(O(\log n)\) bits.

\[
2^{k \log n} = 2^{\log^k n} = n^k
\]

Verifier looks at \(n^k\) bits of proof.

other direction is hard.
Implications of PCP theorem to hardness of approximation.

Theorem: PTAS for Max 3-SAT \(\implies \) \(P = \text{NP} \).

Proof Idea: Use \(\text{NP} = \text{PCP}[\log n, 1] \)

Take any problem in \(\text{NP} \) (will give poly-time alg.)

Take the \(\text{PCP}[\log n, 1] \) verifier's alg. for it.

The alg. depends on:
- \(x \), the input, bits \(x_1 \ldots x_n \)
- \(y \), the "proof", bits \(y_1 \ldots y_t \) \(t \in O(\text{poly}(n)) \) (as above).
- \(r \), the random bits, \(r_1 \ldots r_k \) \(k \approx O(\log n) \)

Any alg. \(\implies \) Boolean 3-SAT formula (as in first NP-completeness proof)

Use variables for \(y_1 \ldots y_t \)

Formulate \(F(x, y, r) \) captures verifier's alg.

Let \(F(x, y) = \bigwedge_{r} F(x, y, r) \) — poly-size.

If \(x \) is YES input \(\implies \exists \) \(y \) s.t. all \(F(x, y, r) \) satisfied.

\(\implies F(x, y) \) satisfied.

If \(x \) is NO input \(\implies \) for any \(y \) at most \(\frac{1}{4} \) of the \(F(x, y, r) \) are satisfied.

\(\implies \) at most a fraction of the clauses of \(F(x, y) \) can be satisfied.

This gives a gap that we can detect with good approx alg. — just like for TSP.

\(\therefore \) PTAS for Max 3-SAT \(\implies \) \(P = \text{NP} \).