sequence of requests
- Alg: must handle each request as it comes
 versus off-line - get to look at whole request sequence first.
- Usual scenario for data structures.
- But we will study situations where it makes sense
to compare with "full info." solution, (i.e. best off-line).

Examples
- List accessing - e.g. Move to Front heuristic.
- Paging - LRU, LFU, CS 341, 350
- Splay trees - dynamic optimality conj.
- Bin packing - First Fit, Best Fit.

Ski Rental. - Skiing first time: Rent $30
Buy $300.
In hindsight: if # times you ski is \(\leq 10 \), rent
\(\geq 10 \), buy.

Online alg. (you don't know how many times)
rent 10 times, then buy
Claim: factor \(2 \) of \(OPT \).
Proof: if # times \(\leq 10 \) - this is \(OPT \)
if \(\cdots \geq 10 \) - you pay \(2 \times OPT \)

Competitive Analysis - compare online algorithm
with optimal off-line solution (even if \(OPT \) is hard to find)
Alg. A is \(c \)-competitive if \(\exists \) constant \(b \) s.t.
\(A(\sigma) \leq c \cdot OPT(\sigma) + b \)
for minimization.
Note: we allow additive term b always (unlike for approx. algs.)

Paging
- fast memory, "cache", holds k pages
- slow memory, n pages \(n \gg k \)

When a page is requested
- if it's in cache, fine.
- otherwise "page fault" must read it into cache
cost 1. Which page do we evict?

Goal: minimize cost

Optimum off-line strategy
evict page whose next request is furthest in future.

If - not trivial
modify any opt. soln to this one, bit by bit
without changing cost

Example

\[
\begin{array}{ccccc}
A & B & C & B & D \\
E & A & B & E & D \\
\end{array}
\]

\(k = 3 \)

\[
\begin{array}{cccc}
A & B & C & D \\
E & A & D & E \\
B & D & E & E \\
\end{array}
\]

cost 3 evictions

Online strategies

- **FIFO** - first in first out
- **LRU** - least recently used
- **LFU** - least frequently used
LRU - least recently used. - like using OPT but pretend future = past.

Ex:

\[
\begin{array}{cccccccc}
A & B & C & B & D & C & E & A & B & E & D \\
\hline
k=3 & A & B & C & D & E & C & D & E & B
\end{array}
\]

- same ex. as previous page.

5 evictions vs. 3 for OPT.

Theorem [Sleator, Tarjan 185]
LRU and FIFO have competitive ratio \(k \).

But LRU is better in practice.

Pf. Divide request seq. into phases

\[
k=3 \quad \text{cycle: } \begin{array}{cccccccc}
\end{array}
\]

- phase 1
- phase 2

a phase stops just before we see \(k+1 \) different pages.

The alg. will use \(\leq k \) swaps per phase,

because LRU and FIFO will not evict a page
used in that phase.

And OPT must evict \(\geq 1 \) in each phase + 1 request

because there are \(k+1 \) distinct pages involved.

So \(\text{alg.} / \text{OPT} \leq k \)

Ex. Fill in more detail here.
Thm. Any deterministic alg. has competitive ratio $\geq k$.

If adversary argument.

$k=$ cache size # pages $= k+1$

Adversary always asks for page not in cache.

n swaps $n =$ length of sequence.

An offline solution that evicts the page with max next request time uses n/k swaps.

Because each time we evict, we're good for next k requests. So $OPT \leq n/k$ and $\text{alg}/OPT \geq k$.

A Randomized "Marking" Algorithm

to serve request for page p

if p not in cache

if all pages in cache are marked then unmark all

choose a random unmarked page to evict & move p in

mark p.

Thm. Expected competitive ratio is $O(\log k)$

Pf. As before, divide the request sequence into phases in which k different pages are requested.

At the beginning of a phase, all pages in cache are unmarked.

The k requested pages will not be evicted in the phase.

Let $S_i =$ pages in cache at start of phase i.

distinguish request for page p as:
- old if $p \in S_i$, new otherwise

Let $n_i =$ # new requests in phase i these all cost 1, (i.e. a page is evicted)
what is the expected cost of old requests? (when we "unluckily" evict a page of S_i and then need it back)

Consider first old request, say for page p.
There are $\leq n_i$ new pages $\Rightarrow \leq n_i$ pages were evicted (at random)

$$\text{Prob} \{ p \text{ was evicted} \} \leq \frac{n_i}{k}$$

More generally, let p_1, p_2, \ldots be the distinct old page requests (in order)

When p_{j+1} is requested there were $k-j$ as-yet-unrequested elements of S_i.
we have marked $j+$ new pages in the cache
unmarked pages in cache $\geq k-j-n_i$

$$\text{Prob} \{ p_{j+1} \text{ in cache} \} \geq \frac{k-j-n_i}{k-j}$$

$$\text{Prob} \{ p_{j+1} \text{ not in cache} \} \leq \frac{n_i}{k-j}$$
Sum over \(j = 0 \ldots k-n_i-1 \). Expected cost of old requests
\[
\leq n_i \left(\frac{1}{k} + \frac{1}{k-1} + \ldots + \frac{1}{k-(k-n_i-1)} \right)
\leq n_i \left(H_k - 1 \right)
\]

Adding the \(n_i \) cost of new pages: \(n_i \cdot H_k \)

Note \(H_k \) is \(O(\log k) \).

Claim: \(\text{OPT costs} \geq \frac{1}{2} \sum n_i \)

Pf. In phases \(i \) and \(i-1 \) at least \(k + n_i \) distinct pages have been requested (the \(k \) in the cache at the start of phase \(i \) + the \(n_i \) new requests)

\(\ast \ast \) except for \(i=1 \), \(\text{OPT makes} \geq n_1 \) page faults in phase \(i \) and \(i-1 \). \# faults in phase \(i \) \(\leq n_i \)

\(\ast \ast \) total cost \(\geq \frac{1}{2} \sum n_i \), \(\sum n_i \leq 20\text{OPT} \)

Competitive ratio

alg. costs \(H_k \sum n_i \leq 2H_k \text{OPT} = O(\log k) \text{OPT} \)

Fact: There is a (nearly) matching lower bound.

It uses an adversary argument where we assume that the adversary does not know the random coin tosses.

\(\ast \) note that \(n_i \) was defined relative to \(S_i \) (what the algorithm had in the cache) so we cannot just claim that \(\text{OPT} \) must use \(n_i \) faults in phase \(i \).