Recall: online algorithm - handles sequence of requests as they come.

Alg. A is **c-competitive** if

$$A(\sigma) \leq c \cdot \text{OPT}(\sigma) + b$$

for min problem

and if b is constant,

$$A(\sigma) \geq c \cdot \text{OPT} - b$$

for max problem.

k-Server Problem - k servers to service requests in metric space of points $P_1 \ldots P_n$

- Request for P_i
 - if a server is at P_i: fine
 - else move a server from its location, say P_j, to P_i at cost $d(P_j, P_i)$ (distance).

Goal: serve requests in given order and minimize total distance.

The offline k-server problem can be solved in poly. time via dynamic programming.

Paging is special case - the "points" are the pages in slow memory, "serving" a request = putting the page in the cache, distances are all 1.

Local Greedy Algorithm

- To meet next request, say at P, move the closest server, i.e. move server from q to P, to minimize $d(P,q)$

Claim: This is not c-competitive for any c.

Pf. Consider point p_1, p_2, q on a line.

$\circ o \circ \circ \circ$

does server

P_1, P_2

2 servers initially at P_2 and at q.

request sequence: P_1, P_2, P_1, P_2...

Greedy moves one server between P_1 and P_2.

cost = length of sequence

OPT moves server from q to P_1. — cost is constant.

Ex. What does LRU do for k-server? Find a bad example: $d(q, P_1)$

Conjecture (open since 1988): There is a k-competitive alg. for k-server problem.

Two cases with k-competitive alg.: 1. paging (LRU)

2. the following.

Double-Coverage Alg.

Case 1: if request is to right [left] of all servers, move closest server.

Case 2: if request is between 2 servers, move both until one reaches the request. (the other will stop at a non-request point.)

(if multiple servers at same point, break ties arbitrarily.)

Then, this is k-competitive.

E.g. on above bad example:

request $\Rightarrow P_1, P_2, P_2$

$\circ o \circ \circ \circ$

Note that q starts moving left.

Eventually q will reach P_2 and then all requests are free.
Pf of theorem. We need to compare ALG to OPT will use an amortized analysis with potential Φ. Think of ALG having k servers and OPT having k servers. Think of OPT moves, then ALG moves (at the ith request) Φ will depend on the difference. Properties we will ensure:

1. $\Phi_i \geq 0$
2. If move of OPT costs s_i, then incr. of Φ is $\leq k \cdot s_i$
3. If moves of ALG cost t_i, then incr. of Φ is $\leq -t_i$ \(\text{(i.e. Φ decreases by $\geq t_i$)} \)

Then $\Phi_{i+1} - \Phi_i \leq k \cdot s_i - t_i$

Taking sum:

$$\Phi_f - \Phi_0 \leq k \cdot \sum s_i - \sum t_i$$

$\sum s_i$ \(\text{OPT cost of ALG} \)

$$ALG \leq k \cdot OPT + \Phi_0 - \Phi_f \leq k \cdot OPT + \Phi_0$$

How do we define Φ?

$$\Phi = k \cdot M + D$$

D = sum of all $\binom{k}{2}$ distances between pairs of Alg's servers.

M = min matching between Alg's servers and Opt's servers.

\[M = d \]

E.g. 1 server each

\[M = d \]

E.g. 2 servers each

The red matching has weight $d_1 + d_3$

The outer matching has weight $(d_1 + d_2 + d_3) + d_2$

So $M = d_1 + d_3$
Proving the properties:

1. \(\phi_i \geq 0 \) since \(M, D \geq 0 \)

2. Suppose \(\text{OPT} \) moves a server distance \(s_i \)
 Then \(D \) unchanged, and \(M \) increases by \(\leq s_i (\leq k \cdot s_i) \)
 (we need \(k \cdot s_i \) later)

3. Suppose \(\text{ALG} \) moves cost \(t_i \)

 2 cases:

 Case 1: \(\text{ALG} \) moved rightmost (or leftmost) server

 \[\begin{array}{c}
 s \quad \rightarrow \quad x \quad \quad \text{OPT already put a server there, so} \\
 t_i \end{array} \]

 \(D \) goes up by \((k-1) t_i \) since server \(s \) moves away

 \(\phi \) decreases by \(\geq k t_i - (k-1) t_i = t_i \)

 Case 2: \(\text{ALG} \) moved two servers cost \(t_i = 2d \)

 \[\begin{array}{c}
 s_1 \quad \rightarrow \quad x \quad \quad \text{one match decreases} \\
 d \quad \quad \quad \text{by} \quad d, \text{one match might go up} \\
 s_2 \quad \leftarrow \quad d \quad \quad \text{by} \quad d \quad \text{M doesn't increase} \\
 \end{array} \]

 \(D - d(s_1, s_2) \) decreases by \(2d \)

 for any other \(s, \text{say} \) right, \(d(s, s_i) \) increases by \(d \)

 \(d(s_1, s_2) \) decreases by \(d \)

 so \(\leq d(s, r) \) is constant.

 \(\phi \) decreases by \(\geq t_i \)

Ex. Find an example to show competitive ratio can be \(k \).
For the general k-server problem:

- \(\frac{1}{2k-1} \) [Koutsoupias & Papadimitriou 1994] combines local greedy with "retrospective alg." that goes to the state the opt. alg. would be in based on requests so far.

For randomized algs:
- lower bound \(\frac{\Omega}{\log n} \) (as for paging)
- upper bound \(O(\log k)^6 \) progress in 2018 Lee