Data structures so far - keys from a totally ordered set
- e.g. numbers in 1D
- accessed by comparisons

Other possibilities
- integers - arithmetic & bit operations give faster alg.
- strings - in CS 240
- geometric data - e.g. pts. or regions in plane
 - not totally ordered, or k-dim. space

2 problems
1. process points, query region to find points in \(R \)
 "Range Search" query region to find points in \(R \)
2. process regions, query point to find region(s)
 "Point Location" query point to find region(s)

Range searching
- preprocess set of points in \(k \) dimensions
 to handle range query

 3 measures - \(P \) - preprocessing time
 \(S \) - space
 \(Q \) - query time (\(\geq \) size of output)
 \(U \) - update time for dynamic case - pts can be added/deleted

\(k = 1 \)

rectangle is an interval
In 1-dim \(P = O(n \log n) \) \(S = O(n) \) \(Q = O(\log n + t) \)
\[U = O(\log n) \]
output size
use sorted list
use balanced binary search trees

\(k = 2 \) even static case is interesting
\(CS 240 \): quad trees, k-d trees, range trees

\[
\sqrt{n} = 2^{\log n / 2}
\]

quad tree
divide squares
into 4 subsquares
repeat until each
square has 0 or 1 pts.

k-d tree
alternately divide
pts in half vertically
then horizontally.

\[
P = O(n \log n) \quad S = O(n) \quad Q = \Theta(\sqrt{n} + t)
\]
output size
quad trees have the same run-times. \(\sqrt{n} \) is bad!
Range Trees:

- improve \(Q \) at the expense of \(S \)
- Make a balanced binary search tree
- Leaves = points sorted by \(x \)-coord

\[D(v) = \text{descendants of node } v \text{ associated with slab from } x = v_L \text{ to } x = v_R \]

At node \(v \), attach array \(A(v) \) — pts in \(D(v) \) sorted by \(y \)

- \(S \in \mathcal{O}(\log n) \) — each point is in \(D(v) \) for \(\log n \) \(v \)'s
- \(P \in \mathcal{O}(n\log n) \) — sort by \(x \) to make tree
 - sort by \(y \) to make lists \(A(v) \)

How to query rectangle \(R \):

- search tree for \(x_1 \) and \(x_2 \)
- the points we want are at leaves between \(x_1 \) and \(x_2 \)
 but we must filter by \(y \)
Look at nodes z — $O(\log n)$ of them
- right children of nodes on search path root $\rightarrow x_1$
- left children of nodes on search path root $\rightarrow x_2$
They correspond to disjoint slabs whose union is $[x_1 \cdots x_2]$.

For each z (each slab),
do binary search in $A(z)$ to get points between y_1 and y_2.
$O(\log n + \text{output})$ per slab.

Since the slabs are disjoint, we don't repeat output.
Thus $Q \in O(\log^2 n + t)$, $t = \text{output size}$.

Fractional cascading
- improve Q from $O(\log^2 n + t)$ to $O(\log n + t)$
- idea: in each x-slab we repeat search for same y_1, y_2
 That's wasteful!

Consider node z child w.

Consider node z

\[A(z) : \begin{array}{cccccc}
1 & 3 & 4 & 7 & 11 & 12 \\
\end{array} \]

\[A(w) : \begin{array}{cccc}
1 & 4 & 7 & 11 \\
\end{array} \]

Keep ptrs from each element in z's list
to corresponding element (or next higher)
in w's list.

Gives $O(\log n + t)$

We search once for y_1, y_2
in list of root and follow ptrs.
Point Location
- Plane divided into disjoint polygonal regions
 preprocess to query: given a pt, which region contains it.

Regions might come from “closest to center”

In 1-D

Balanced binary search tree

P = O(n log n)
S = O(n)
Q = O(log n)
In 2D

Divide into slabs by adding vertical line at every pt.

given query pt \(x \), find correct slab \(O(\log n) \)
then do binary search by \(y \) — \(O(\log n) \)
(still works even though lines not constant \(y \))

\[Q = O(\log n) \] — excellent!

Space \(S = \Theta(n^2) \)

Each of \(\frac{n}{2} \) lines is in \(\frac{n}{2} \) slabs

From one slab to next — few changes.

Make a BST for leftmost slab and update for subsequent slabs.

Total # updates to BST is \(O(n) \) — every segment gets inserted once and deleted once.
Idea: update a BST and search it in the past.
\[
\begin{array}{c|c|c|c}
\text{BST}_1 & \text{BST}_2 & \text{BST}_3 \\
\hline
\text{t=1} & \text{t=2} & \text{t=3} \\
\hline
\end{array}
\Rightarrow \text{time } t
\]
called "Persistent Data Structure".
e.g. Facebook friends, query in past.
Partial Persistence — query in past
— update only most recent
Full Persistence — can change past (Inception!)

Driscoll, Tarjan '89.
add partial persistence to any data structure (this is hard to do)
for planar point location this gives:
\[
\begin{align*}
P &= O(n \log n) \\
S &= O(n) \\
Q &= O(\log n)
\end{align*}
\]
\[
\begin{array}{c}
\text{same as 1-D.}
\end{array}
\]