Succinct Data Structures

Ian Munro
General Motivation

In Many Computations ... Storage Costs of Pointers and Other Structures Dominate that of Real Data
Often this information is not “just random pointers”

How do we encode a combinatorial object (e.g. a tree) of specialized information ... even a static one in a small amount of space & still perform queries in constant time ???
Succinct Data Structure

Representation of a combinatorial object:

Space requirement of representation “close to” information theoretic lower bound and

Time for operations required of the data type comparable to that of representation without such space constraints ($O(1)$)
Example: Static Bounded Subset

Given: Universe \([m]= 0,\ldots,m-1\) and \(n\) arbitrary elements from this universe
Create: Static data structure to support “member?” in constant time in the \(\lg m\) bit RAM model
Using: Close to information theory lower bound space, i.e. about \(\lg \binom{m}{n}\) bits

(Brodnik & M)
Careful .. Lower Bounds

Beame-Fich: Find largest less than i is tough in some ranges of \(m \approx 2^{\sqrt{\lg n}} \)

But OK if i is present this can be added (Raman, Raman, Rao etc)
Focus on Trees

.. Because Computer Science is .. Arbophilic
Directories (Unix, all the rest)
Search trees (B-trees, binary search trees, digital trees or tries)
Graph structures (we do a tree based search)

and a key application
Search indices for text (including DNA)
Preprocess Text for Search
A Big Patricia Trie/Suffix Trie

Given a large text file; treat it as bit vector
Construct a trie with leaves pointing to unique locations in text that “match” path in trie (paths must start at character boundaries)
Skip the nodes where there is no branching (n-1 internal nodes)
So the *basic* story on text search

A **suffix tree** (40 years old this year) permits search for any arbitrary query string in time proportional to the query string. But the *usual* space for the tree can be **prohibitive**. Most users, especially in Bioinformatics as well as **Open Text** and **Manber & Myers** went to suffix arrays instead.

Suffix array: reference to each index point in order by what is pointed to.
The Issue

Suffix tree/ array methods remain extremely effective, especially for single user, single machine searches.

So, can we represent a tree (e.g. a binary tree) in substantially less space?
Abstract data type: binary tree
Size: \(n-1 \) internal nodes, \(n \) leaves
Operations: child, parent, subtree size, leaf data
Motivation: “Obvious” representation of an \(n \) node tree takes about \(6n \lg n \) bit words (up, left, right, size, memory manager, leaf reference)
i.e. full suffix tree takes about 5 or 6 times the space of suffix array (i.e. leaf references only)
Succinct Representations of Trees

Start with Jacobson, then others:

Catalan number = # ordered rooted forests
Or # binary trees

\[= \frac{1}{n+1} \binom{2n}{n} \approx \frac{4^n}{(\pi n)^{3/2}} \]

So lower bound on specifying is about \(2n \) bits

What are natural representations?
Arbitrary Order Trees

Use parenthesis notation
Represent the tree

As the binary string ((((())))((()))())
traverse tree as
“(" for node, then
subtrees, then ")"

Each node takes 2 bits
What you learned about Heaps

Only 1 heap (shape) on n nodes
Balanced tree, bottom level pushed left
number nodes row by row;
lchild(i) = 2i; rchild(i) = 2i + 1
What you learned about Heaps

Only 1 heap (shape) on n nodes
Balanced tree, bottom level pushed left
number nodes row by row;
lchild(i)=2i; rchild(i)=2i+1

Data: Parent value > child
This gives an implicit data structure for priority queue
Generalizing: Heap-like Notation for any Binary Tree

Add external nodes
Enumerate level by level

Store vector 11110111001000000 length $2n+1$
(Here we don’t know size of subtrees; can be overcome. Could use isomorphism to flip between notations)
What you didn’t know about Heaps

Add external nodes
Enumerate level by level

Store vector 11110111001000000 length 2n+1
(Here we don’t know size of subtrees; can be overcome. Could use isomorphism to flip between notations)
How do we Navigate?

Jacobson’s key suggestion:
Operations on a bit vector
\[\text{rank}(x) = \text{\# 1's up to \& including } x \]
\[\text{select}(x) = \text{position of } x^{th} \text{ 1} \]

So in the binary tree

\[\text{leftchild}(x) = 2 \times \text{rank}(x) \]
\[\text{rightchild}(x) = 2 \times \text{rank}(x) + 1 \]
\[\text{parent}(x) = \text{select}(\lfloor x/2 \rfloor) \]
Add external nodes
Enumerate level by level

Store vector 11110111001000000 length 2n+1
(Here don’t know size of subtrees; can be overcome. Could use isomorphism to flip between notations)
Rank & Select

Rank: Auxiliary storage $\sim \frac{2n \lg \lg n}{\lg n}$ bits

#1’s up to each $(\lg n)^2$ rd bit
#1’s within these too each $\lg n^\text{th}$ bit
Table lookup after that

Select: More complicated (especially to get this lower order term) but similar notions

Key issue: Rank & Select take $O(1)$ time with $\lg n$ bit word (M. et al)... as detailed on the board
Lower Bound: for Rank & for Select

Theorem (Golynski): Given a bit vector of length n and an “index” (extra data) of size r bits, let t be the number of bits probed to perform rank (or select) then:

$$r = \Omega\left(n \frac{\lg t}{t}\right).$$

Proof idea: Argue to reconstructing the entire string with too few rank queries (similarly for select)

Corollary (Golynski): Under the $\lg n$ bit RAM model, an index of size $\Theta\left(n \frac{\lg \lg n}{\lg n}\right)$ is necessary and sufficient to perform the rank and the select operations.
Planar Graphs (Jacobson; Lu et al; Barbay et al)

Subset of \([n]\) (Brodnik & M)

Permutations \([n] \rightarrow [n]\)

Or more generally

Functions \([n] \rightarrow [n]\)

But what operations?

Clearly \(\pi(i)\), but also \(\pi^{-1}(i)\)

And then \(\pi^k(i)\) and \(\pi^{-k}(i)\)
More Data Types

Suffix Arrays (special permutations; references to positions in text sorted lexicographically) in linear space

Arbitrary Graphs (Farzan & M)

“**Arbitrary**” **Classes of Trees** (Farzan & M)

Partial Orders (M & Nicholson)
Interesting, and useful, combinatorial objects can be:

Stored succinctly \(\text{O}(\text{lower bound}) + o()\)

So that

Natural queries are performed in \(O(1)\) time (or at least very close)

Programs: http://pizzachili.dcc.uchile.cl/index.html

This can make the difference between using the data type and not ...