Hedging (Dynamic Trading) Analysis

In addition to pricing: MC simulation allows us to analyze complex problem, e.g., dynamic trading performance

Consider option hedging:

• Hedging is a dynamic trading process and trading can only be implemented at discrete times
• Hedging is crucial for financial institutions. Analyzing performance of hedging/dynamic trading process is very important exercise.

Goal of analysis:

• How good is your hedging/trading strategy?
• How risky is it? (how much risk remains for hedging)
• How do we measure the risk?

It is important to conduct

• hedging analysis
• back testing

We conduct model based hedging analysis, assuming model is correct, selling an option, dynamically trading underlying, and cash account financing.

This corresponds to the dynamic trading strategy \{-V_t, \delta_t S_t, B_t\}
where the bond account always ensures balancing of the account (self-financed)

Assume

\[\frac{dS}{S} = \mu dt + \sigma dZ_t \]

We generate MC scenario paths based on the above model and compute P&L of the strategy along each path for the dynamic trading strategy considered.

Note. Note risk neutral model

Assume that trading time are \(t_n = n\Delta t, \Delta t = \frac{T}{N}, \) where

\[0 = t_0 < t_1 < \cdots < t_N = T \]

Assume that \(\delta_n \) units of \(S \) are held in \([t_n, t_{n+1}]\).

Initially \(n = 0 \), option: \(-V_0 = -V(S_0,0) \), underlying \(\delta_0 \), balancing with cash account by setting

\[B_0 = V_0 - \delta_0 S_0 \]

Portfolio \(\Pi = -V + \delta S + B \) has initial value \(\Pi_0 = 0 \)

At \(t_n \), \(\Pi_n = -V(S_n,t_n) + \delta_n S_n + B_n \)

Consider \([t_n, t_{n+1}]\). At \(t_{n+1} \), rebalancing position in share and updating cash account so that \(\Pi_{t_{n+1}}^- = \Pi_{t_{n+1}}^+ \)

\[-V(S_{n+1},t_{n+1}) + \delta_n S_{n+1} + B_n e^{r\Delta t} = -V(S_{n+1},t_{n+1}) + \delta_{n+1} S_{n+1} + B_{n+1} \]
\[B_{n+1} = B_n e^{r \Delta t} + (\delta_n - \delta_{n+1}) S_{n+1} \]

If \(\delta_{n+1} > \delta_n \), buy additional \(\delta_{n+1} - \delta_n \) units.

If \(\delta_{n+1} < \delta_n \), sell additional \(\delta_{n+1} - \delta_n \) units.

At expiry \(t_N = T \), liquid the portfolio formed at \(t_{N-1} \), which has value

\[\Pi_N = -V(S_N, t_N) + \delta_{N-1} S_N + B_{N-1} e^{r \Delta t} \]

Note.

- \(\Pi_N \) is random. If \(\Pi_N \equiv 0 \), \(\Rightarrow \) perfect hedge
- \(\Pi_N > 0 \), a profit scenario for the writer
- \(\Pi_N < 0 \), a loss scenario.
- \(\Pi_N \) is a measure of hedging error. For hedging, we often consider discounted relative P&L

\[P&L = \frac{e^{-rT} \Pi_N}{V(S_0, 0)} \]

We then examine distribution properties of P&L

How to Compute Delta for Hedging?

Delta Hedging: at \(t \), \(\delta_t = \frac{\partial V}{\partial S}(S(t), t) \)

In general, we only have approximations to delta.

If a binomial lattice is used, solving replication equation yields
\[\delta_j^n = \frac{V_{j+1}^{n+1} - V_j^{n+1}}{(u - d)S_j} \]