CS 487 / ...
Introduction to Symbolic Computation

University of Waterloo
Éric Schost
eschost@uwaterloo.ca
Staff

Instructor
• Éric Schost, DC 3627, eschost@uwaterloo.ca

TA
• Catherine St-Pierre, DC 2302, catherine.st-pierre@uwaterloo.ca

Lectures
• Tuesday and Thursday, 11:30 - 12:50 in MC4041

Office hours (ES)
• Thursday, 1:30 - 3pm
Assignments, exams, project, etc

- **4 assignments** (35% undergrad / 30% grad)
 - submission by email
 - due on Tuesday at 5pm

- **Midterm** (25% / 20%)
 - February 28 in class

- **Final** (40% / 30%)
 - TBD

- **Project** (+5% / 20%)
 - mandatory for grad students
 - optional for undergrads, +5 marks available
 - reading papers and writing a report, coding may be involved but not required
Electronic communication

Piazza

- sign up using your uwaterloo email address
- https://piazza.com/uwaterloo.ca/winter2019/cs487
- posting solutions to assignments is forbidden

email

- course account cs487@student.cs.uwaterloo.ca
- use your uwaterloo address
- CS487 / · · · in the subject line
This course

What you should know

• CS240-level algorithms
• big-O notation, master theorem
• a few things about matrices

What we will do

• a lot of algorithms
• a bit of math (algebra – rings, fields, …)

What we will not do

• difficult math (analysis, SVD / QR, probabilities, …)
• spend a lot of time learning Maple, Julia, python, …
Computer algebra

Roughly, studies how to solve mathematical problems on a computer, with an emphasis on “exact solutions”.

\[\text{solve}(2x + 1 = 0) \implies x = -\frac{1}{2}, \quad \text{not} \quad x = -0.499999999999. \]

Many aspects

- programming languages for expressing mathematical notions;
- algorithms and complexity;
- mixing symbolics and numerics
- …

This course: emphasis on algorithms and complexity.
Basic problem: dealing with numbers properly.

- **exactness** means that we handle multi-precision (arbitrary length) numbers
- “efficient” algorithm = polynomial in the size of the input / output

A handful of algorithms

- addition: easy
- multiplication: hard, but satisfactory answers
- division: well-understood
- factorization: ultra-hard
 became especially hot after the discovery of the RSA scheme.
A large fraction of the world’s computers are busy solving linear systems (or mining Bitcoins)

\[\begin{align*}
 x_1 + x_2 - 3x_3 &= 3 \\
 -x_1 + 3x_2 - x_3 &= 0 \\
 10x_1 + 3x_2 - x_3 &= 5
\end{align*} \]

- google
- simplex for linear programming
- numerical simulations of differential equations
Linear equations

In many cases, **floating-point** computations are used. **Exact solutions** are still useful:

- when exact answers are wanted, sometimes, not always, useful
- handling degenerate problems, **NAN** or slowdown with ill-posed problems
- in contexts that are not numerical, **crypto:** RSA, ECC
- as sub-routines of higher-level algorithms. like polynomial system solving

Fortunately for us, solving systems in an exact manner, we mostly forget about numerical instability.
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Year</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive algorithm</td>
<td></td>
<td>n^3 mults</td>
</tr>
<tr>
<td>Pan - Winograd</td>
<td>1966-68</td>
<td>$n^3/2$ mults</td>
</tr>
<tr>
<td>Strassen</td>
<td>1969</td>
<td>$O(n^{\log_2(7)}) \simeq O(n^{2.81})$ ops</td>
</tr>
<tr>
<td>Bini et al.</td>
<td>1980</td>
<td>$O(n^{\log_{12}(1000) + \varepsilon}) \simeq O(n^{2.78})$ ops</td>
</tr>
<tr>
<td>Schönhage</td>
<td>1981</td>
<td>$O(n^{\log_{110}(140608) + \varepsilon}) \simeq O(n^{2.52})$ ops</td>
</tr>
<tr>
<td>Coppersmith-Winograd</td>
<td>1990</td>
<td>$O(n^{2.37})$ ops</td>
</tr>
<tr>
<td>• sets of integers without arithmetic progressions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This is where properly understanding the **output you expect** becomes important.

System:

\[
F_1 = -3x_2^2 - 3x_2 + x_1^2 - 1, \quad F_2 = -x_2^2 + x_1^2.
\]

Solutions:

\[
(-1, -1), \quad (1, -1), \quad (-1/2, -1/2), \quad (1/2, -1/2).
\]
Polynomial equations

This is where properly understanding the output you expect becomes important.

System:

\[F_1 = -3x_2^2 - 3x_2 + x_1^2 - 1, \quad F_2 = -x_2^2 + x_1^2. \]

Solutions:

\((-1, -1), \quad (1, -1), \quad (-1/2, -1/2), \quad (1/2, -1/2). \)

System:

\[F_1 = -3x_2^2 - 3x_2 + x_1^2 - 1, \quad F_2 = -x_2^2 + x_1^2 + 1. \]

Solutions:

\[x_1^4 + \frac{7}{4}x_1^2 + \frac{7}{4} = 0, \quad x_2 = -\frac{2}{3}x_1^2 - \frac{4}{3}. \]

The second case is typical.
A brief timeline

- Consistency is decidable (but doubly exponential)
 Hermann, 1926
- Practical algorithms to solve polynomial systems
 Buchberger, 1965
- Nowadays:
Problem: find the next term.

\[U : 1, 1, 1, 1, 1, 1, 1 \]
\[V : 0, 1, 1, 2, 3, 5, 8 \]
\[W : 12, 134, 222, 21, -3898, 40039, -347154, -2929918 \]
Problem: find the next term.

\[U : 1, 1, 1, 1, 1, 1, 1 \]
\[V : 0, 1, 1, 2, 3, 5, 8 \]
\[W : 12, 134, 222, 21, -3898, 40039, -347154, -2929918 \]

Answer: 1, 13 and −24657854.
Computing with sequences

Problem: find the next term.

\(U : 1, 1, 1, 1, 1, 1, 1 \)
\(V : 0, 1, 1, 2, 3, 5, 8 \)
\(W : 12, 134, 222, 21, -3898, 40039, -347154, -2929918 \)

Answer: 1, 13 and \(-24657854\).

How? The sequences \(U, V, W \) satisfy linear recurrences with constant coefficients:

\[
U_{n+1} = U_n, \\
V_{n+2} = V_{n+1} + V_n, \\
W_{n+4} = 12W_{n+3} - 33W_{n+2} + 22W_{n+1} + 19W_n.
\]

Euclid’s algorithm provides a way to find the recurrence.
Computing with sequences

1978: Apéry proves that $\sum_{n \geq 1} \frac{1}{n^3}$ is irrational.

To convince ourselves of the validity of Apéry’s method we need only complete the following exercise. Let

$$b_n = \sum_{k=0}^{n} \left(\binom{n}{k} \right)^2 \left(\binom{n+k}{k} \right)^2$$

$$c_{n,k} = \sum_{m=1}^{n} \frac{1}{m^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 \binom{n}{m} \binom{n+m}{m}}$$

$$a_n = \sum_{k=0}^{n} \left(\binom{n}{k} \right)^2 \left(\binom{n+k}{k} \right)^2 c_{n,k}.$$
1978: Apéry proves that $\sum_{n \geq 1} \frac{1}{n^3}$ is irrational.

Then each sequence a_n and b_n satisfies the recurrence

$$n^3 u_n - (34n^3 - 51n^2 + 27n - 5)u_{n-1} + (n - 1)^3 u_{n-2} = 0.$$

Neither Cohen or I (van der Poorten) had been able to prove this in two months.
A brief history

- AI at MIT: sums and integrals LISP
 Minski, Moses, . . . , 1960’s
- a small project at UWaterloo B/C
 Maple, 1980
- So let’s look forward to that near future, where all the “real” math would be done by computers
This course

• Basic objects
 polynomials, matrices

• Basic techniques
 divide-and-conquer, Newton iteration, Euclid’s algorithm

• Vague goal of the course: understanding some applications to coding theory (Reed Solomon codes – CD, DVD, QR, . . .)
 finite fields, algorithms on polynomials
Polynomial (and integer) multiplication
Problem statement

Input

• two polynomials

\[F = f_0 + f_1x + \cdots + f_{n-1}x^{n-1} \quad G = g_0 + g_1x + \cdots + g_{n-1}x^{n-1} \]

Output

• the product

\[H = FG = h_0 + \cdots + h_{2n-2}x^{2n-2} \]

with

\[h_0 = f_0g_0 \quad \ldots \quad h_i = \sum_{j+k=i} f_jg_k \quad \ldots \quad h_{2n-2} = f_{n-1}g_{n-1}. \]
Motivation

Multiplication is a central problem.

Algorithms for

- gcd
- factorization
- root-finding
- evaluation, interpolation
- Chinese remaindering
- linear algebra (a little bit)
- polynomial system solving (a little bit)

rely on polynomial multiplication, and their complexity can be expressed using that of multiplication.
Prop. One can multiply polynomials with \(n \) terms using . . .

- the naive algorithm
 \[O(n^2) \] operations (+, −, ×).

- Karatsuba’s algorithm
 \[O(n^{1.59}) \] operations
 \[1.59 = \log_2(3) \]

- Toom’s algorithm(s)
 \[O(n^{1.47}) \], . . . operations
 \[1.47 = \log_3(5) \]

- Fast Fourier Transform
 \[O(n \log(n)) \] operations
 \[O(n \log(n) \log(\log(n))) \] operations
 nice cases
 in general

It’s still unknown with the optimal is.
Practical aspects: don’t neglect . . .

- the constants in the $O(\ldots)$: usually better for the simpler (slower) algorithms
- lower-level aspects (data representation, memory access, . . .)

In the best current implementations

- Karatsuba beats the naive algorithm for degrees about 32.
- FFT wins for degrees about 128.

Some problems (crypto, number theory) require to handle polynomials of degree about 1000000.
Most algorithms for polynomials, matrices, ... are insensitive to the nature of the coefficients:

- integers,
- rational numbers,
- complex numbers,
- others.

All that is needed is that ...

- you can **add** coefficients,
- and **multiply** them,
- and sometimes **divide** them
- with some obvious **good-behaviour rules**.
Rings

A ring is a set with an operation $+$ and an operation \times where everything we would expect to hold, holds.
Rings

A ring is a set with an operation $+$ and an operation \times where everything we would expect to hold, holds.

Addition and subtraction

- $a - a = 0$
- $a + b = b + a$
- $a + (b + c) = (a + b) + c$ (so we can define $a + b + c$)

Multiplication (we often omit the symbol \times)

- $a(bc) = (ab)c$ (so we can define abc)

Addition and multiplication

- $a(b + c) = ab + ac$
Examples and non-examples

Examples

• integers, rationals, complex numbers, ...

Counterexamples

• machine floats

```c
void main(){
  float a, b, c;   a = 3432.675;
    b = 0.03232;
    c = 24.535;
  printf("%f\n", ((a+b)+c) - (a+(b+c)));
}

-0.000244
```
Further examples

Bits =\{0,1\} form a ring with the operations

<table>
<thead>
<tr>
<th>xor</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>and</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

that we prefer to write

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>×</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Rule: do the operation as if you had integers, and reduce modulo 2.

Notation: \(\{0,1\} = \mathbb{F}_2 = \text{GF}(2) = \mathbb{Z}/2\mathbb{Z}\).
The complexity of an algorithm for multiplying polynomials (or matrices) over a ring R is expressed by counting operations ($+$, $-$, \times) in R.

A good analogy: the complexity of an algorithm for sorting arrays over a set S with an order $<$ is expressed by counting comparisons in S.
Polynomials and integers

Polynomials. You want to multiply $3x^2 + 2x + 1$ and $6x^2 + 5x + 4$.

$$(3x^2 + 2x + 1) \times (6x^2 + 5x + 4)$$

$$= (3 \cdot 6)x^4 + (3 \cdot 5 + 2 \cdot 6)x^3 + (3 \cdot 4 + 2 \cdot 5 + 1 \cdot 6)x^2 + (2 \cdot 4 + 1 \cdot 5)x + (1 \cdot 4)$$

$$= 18x^4 + 27x^3 + 28x^2 + 13x + 4.$$

Integers. You want to multiply 321 and 654 (base 10).

$$(3 \cdot 10^2 + 2 \cdot 10 + 1) \times (6 \cdot 10^2 + 5 \cdot 10 + 4)$$

$$= 18 \cdot 10^4 + 27 \cdot 10^3 + 28 \cdot 10^2 + 13 \cdot 10 + 4$$

$$= 2 \cdot 10^5 + 9 \cdot 10^3 + 9 \cdot 10^2 + 3 \cdot 10 + 4 = 209934.$$

Conclusion: similarities, but carries make the integer case seemingly harder.
The algorithms work almost the same, but are more complicated.

Prop. One can multiply integer with \(n \) bits using …

- the naive algorithm
 \(O(n^2) \) bit operations.

- Karatsuba’s algorithm
 \(O(n^{1.59}) \) bit operations
 \[1.59 = \log_2(3) \]

- Toom’s algorithm(s)
 \(O(n^{1.47}) \) bit operations
 \[1.47 = \log_3(5) \]

- Fast Fourier Transform
 \(O(n \log(n) 2^{O(\log^*(n))}) \) bit operations
 \(\log^* = \text{nbr of logs to reach } 1 \)

It’s still unknown with the optimal is.
In practice

Some people work very hard on integer multiplication

GMP (GNU Multiple Precision)
- started in 1991, written in C, 15+ MB source code
- store integers as arrays of unsigned long + some size info
- a lot of assembly

Why?
- integers → rationals, long floats, ...
- compiling gcc:
  ```
  ./contrib/download_prerequisites
  gmp='gmp-6.1.0.tar.bz2'
  mpfr='mpfr-3.1.4.tar.bz2'
  ```
In practice

Some people work **very hard** on integer multiplication

from gmplib.org
Naive algorithm
Naive multiplication

You have to multiply

\[F = f_0 + f_1 x + \cdots + f_{n-1} x^{n-1}, \quad G = g_0 + g_1 x + \cdots + g_{n-1} x^{n-1}; \]

the result is

\[H = FG = h_0 + \cdots + h_{2n-2} x^{2n-2} \]

with

\[h_0 = f_0 g_0 \quad \cdots \quad h_i = \sum_{j+k=i} f_j g_k \quad \cdots \quad h_{2n-2} = f_{n-1} g_{n-1}. \]

Looking at the formula, computing all \(h_i \) takes \(n^2 \) multiplications and \((n - 1)^2 \) additions.

Total: \(O(n^2) \).
Karatsuba’s algorithm
Karatsuba’s algorithm

Two ingredients
- a trick for low degree
- divide-and-conquer

The trick. You have to multiply

\[F = f_0 + f_1 x, \quad G = g_0 + g_1 x, \]

so the product is

\[H = f_0 g_0 + (f_0 g_1 + f_1 g_0) x + f_1 g_1 x^2. \]

Slow algorithm: compute \(f_0 g_0, f_0 g_1, f_1 g_0, f_1 g_1 \).
Karatsuba’s algorithm

Two ingredients
- a trick for low degree
- divide-and-conquer

The trick. You have to multiply

\[F = f_0 + f_1 x, \quad G = g_0 + g_1 x, \]

so the product is

\[H = f_0 g_0 + (f_0 g_1 + f_1 g_0) x + f_1 g_1 x^2. \]

Better:
- compute \(f_0 g_0 \) and \(f_1 g_1 \)
- deduce \(f_0 g_1 + f_1 g_0 = (f_0 + f_1)(g_0 + g_1) - f_0 g_0 - f_1 g_1 \)

3 multiplications and 4 additions.
Divide and conquer

Suppose now that F, G have n terms, with $n = 2^s$, and let

$$F = F_0 + F_1 x^{n/2}, \quad G = G_0 + G_1 x^{n/2};$$

so F_0, F_1, G_0, G_1 have $n/2$ terms. As before, $H = FG$ is

$$H = F_0 G_0 + (F_0 G_1 + F_1 G_0) x^{n/2} + F_1 G_1 x^n.$$

Algorithm

- if $n = 1$, return $h = f_0 g_0$
- compute recursively $F_0 G_0, F_1 G_1, (F_0 + F_1)(G_0 + G_1)$
- deduce $F_0 G_1 + F_1 G_0 = (F_0 + F_1)(G_0 + G_1) - F_0 G_0 - F_1 G_1$.
- return H.

3 recursive calls and some additions.
Warmup: simplified analysis

We count only **multiplications**:

- \(k(n) \) is the number of multiplications with inputs of size \(n = 2^s \).

Recurrence:

- \(k(1) = 1 \)
- \(k(n) = 3k(n/2) \)

Unrolling the recurrence:

\[
 k(n) = k(2^s) = 3k(2^{s-1}) = 3^2k(2^{s-2}) = \cdots = 3^s k(1) = 3^s.
\]

Simplification: \(k(n) = 3^s = 3^{\log_2(n)} = n^{\log_2(3)} \).
And now for real

Total complexity

- \(K(n)\) is the number of operations \((+, -, \times)\) with inputs of size \(n = 2^s\).

Recurrence:

- \(K(1) = 1\)
- \(K(n) = 3K(n/2) + \ell n\)

Here, \(\ell\) is a constant that I don’t want to estimate (\(\ell\) is about 4)
Master theorem, first version

Assumption: suppose that a function $T(n)$ satisfies

$$T(n) = aT\left(\frac{n}{b}\right) + cn^k$$

for n a power of b, with

- $b > 1$ divide problem size by b
- $a > b$ do a recursive calls
- $\log_b(a) > k$ runtime $O(n^{\log_b(a)})$ if no second term

Conclusion: for n a power of b,

$$T(n) = \Theta(n^{\log_b(a)})$$

Example: Karatsuba with $a = 3, b = 2$,

$$K(n) = \Theta(n^{\log_2(3)})$$
Any \(n \)

Easy solution
- replace \(n \) by the next power of 2.

To do better
- adjust the size of the recursive calls: \(2 \times \lceil n/2 \rceil \) and \(1 \times \lfloor n/2 \rfloor \).

(number of mults in size \(2^s \))/\(3^s \):

\[n_0 = 32 \]
\[n_0 = 1 \]

http://pauillac.inria.fr/~quercia/
Toom’s algorithm(s)
The idea behind Karatsuba’s trick

Evaluation.

\[
\begin{align*}
 f_0 & = F(0) & g_0 & = G(0) \\
 f_0 + f_1 & = F(1) & g_0 + g_1 & = G(1) \\
 f_1 & = F(\infty) & g_1 & = G(\infty)
\end{align*}
\]

Multiplication. After the products, we know

\[
\begin{align*}
 H(0) & = F(0)G(0) \\
 H(1) & = F(1)G(1) \\
 H(\infty) & = F(\infty)G(\infty)
\end{align*}
\]

Interpolation.

\[
H = H(0) + (H(1) - H(0) - H(\infty))x + H(\infty)x^2.
\]
Toom’s 3-algorithm

From now on, we work with polynomials in \(\mathbb{Q}[x] \).

Let

\[
F = f_0 + f_1 x + f_2 x^2, \quad G = g_0 + g_1 x + g_2 x^2
\]

and

\[
H = FG = h_0 + h_1 x + h_2 x^2 + h_3 x^3 + h_4 x^4.
\]

To get \(H \), **we still do**

- evaluation,
- multiplication,
- interpolation.

Now, we need 5 values because \(H \) **has 5 unknown coefficients:**

- \(0, 1, -1, 2, \infty \) **other choices are possible**
- would not work with coefficients in \(\mathbb{F}_2 \).
The evaluation / interpolation phase

Evaluation.

\[
\begin{align*}
F(0) &= f_0 \quad & G(0) &= g_0 \\
F(1) &= f_0 + f_1 + f_2 \quad & G(1) &= g_0 + g_1 + g_2 \\
F(-1) &= f_0 - f_1 + f_2 \quad & G(-1) &= g_0 - g_1 + g_2 \\
F(2) &= f_0 + 2f_1 + 4f_2 \quad & G(2) &= g_0 + 2g_1 + 4g_2 \\
F(\infty) &= f_2 \quad & G(\infty) &= g_2
\end{align*}
\]

Multiplication: the products give us

\[
H(0) = F(0)G(0), \quad \ldots, \quad H(\infty) = F(\infty)G(\infty)
\]
The evaluation / interpolation phase

Interpolation.

Recover h_0, h_1, h_2, h_3, h_4 knowing

\[
\begin{align*}
H(0) &= h_0 \\
H(-1) &= h_0 - h_1 + h_2 - h_3 + h_4 \\
H(1) &= h_0 + h_1 + h_2 + h_3 + h_4 \\
H(2) &= h_0 + 2h_1 + 4h_2 + 8h_3 + 16h_4 \\
H(\infty) &= h_4
\end{align*}
\]

Linear system of 5 equations in 5 unknowns.

Remark: rather sophisticated algorithms used to optimize the resolution (quasi-exhaustive search, processor dependent, . . .)
The evaluation / interpolation phase

\[
A_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
A_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
A_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 3 & 3 & 9 & 15 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
A_3 = \begin{pmatrix}
1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 3 & 3 & 9 & 15 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\tilde{A}_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 3 & 3 & 9 & 15 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\tilde{A}_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 6 & 12 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\tilde{A}_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 6 & 12 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\tilde{A}_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\tilde{A}_3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

http://marco.bodrato.it/
The Toom recursion

Analysis: at each step,
- we divide n by 3;
- and we do 5 recursive calls;
- the extra operations count is ℓn, for some ℓ.

Recurrence:
$$T(n) = 5T\left(\frac{n}{3}\right) + \ell n.$$

Master theorem:
$$T(n) = \Theta(n^{\log_3(5)}) = O(n^{1.47}).$$

Remark: the constant in the $O(\)$ is $\approx \ell$.
Generalizations of Toom’s algorithm

Algorithm: Write the input F, G as

$$F = F_0 + F_1 x^{n/k} + \cdots + F_{k-1} x^{(k-1)n/k}, \quad G = G_0 + G_1 x^{n/k} + \cdots + G_{k-1} x^{(k-1)n/k},$$

and the output as $H = FG = H_0 + H_1 x^{n/k} + \cdots + H_{2k-2} x^{(2k-2)n/k}$.

Analysis: at each step,

- we divide n by k; \hspace{1cm} \text{number of terms in F, G}
- we do $2k - 1$ recursive calls; \hspace{1cm} \text{number of terms in H}
- the extra operations count is ℓn, for some ℓ.

Master theorem:

$$T(n) = \Theta(n^{\log_k (2k-1)}).$$

Examples:

$$k = 100 \implies O(n^{1.15})$$
Generalizations of Toom’s algorithm

Algorithm: Write the input F, G as

$$F = F_0 + F_1 x^{n/k} + \cdots + F_{k-1} x^{(k-1)n/k}, \quad G = G_0 + G_1 x^{n/k} + \cdots + G_{k-1} x^{(k-1)n/k},$$

and the output as $H = FG = H_0 + H_1 x^{n/k} + \cdots + H_{2k-2} x^{(2k-2)n/k}$.

Analysis: at each step,

- we divide n by k; \hspace{1cm} \text{number of terms in } F, G
- we do $2k - 1$ recursive calls; \hspace{1cm} \text{number of terms in } H
- the extra operations count is ℓn, for some ℓ.

Master theorem:

$$T(n) = \Theta(n^{\log_k (2k-1)}).$$

Examples:

$$k = 1000 \implies O(n^{1.1})$$
Generalizations of Toom’s algorithm

Algorithm: Write the input F, G as

$$F = F_0 + F_1 x^{n/k} + \cdots + F_{k-1} x^{(k-1)n/k}, \quad G = G_0 + G_1 x^{n/k} + \cdots + G_{k-1} x^{(k-1)n/k},$$

and the output as $H = FG = H_0 + H_1 x^{n/k} + \cdots + H_{2k-2} x^{(2k-2)n/k}$.

Analysis: at each step,

- we divide n by k; **number of terms in F, G**
- we do $2k - 1$ recursive calls; **number of terms in H**
- the extra operations count is ℓn, for some ℓ.

Master theorem:

$$T(n) = \Theta(n^{\log_k (2k-1)}).$$

Examples:

$$k = 10000 \implies O(n^{1.07})$$
Fast Fourier Transform

(over \mathbb{C})
The idea behind FFT

Suppose that (e.g. in Toom’s algorithm), evaluation and interpolation were *almost free*, say *linear time*.

Multiplication algorithm:

- evaluate F and G at $2n - 1$ points \(O(n) \)
- multiply the values \(O(n) \)
- interpolate H \(O(n) \)

Total: \(O(n) \).
The idea behind FFT

Suppose that (e.g. in Toom’s algorithm), evaluation and interpolation were almost free, say linear time.

Multiplication algorithm:

• evaluate F and G at $2n - 1$ points $O(n)$
• multiply the values $O(n)$
• interpolate H $O(n)$

Total: $O(n)$.

In real life

• evaluation and interpolation are expensive in general;
• FFT gives an $O(n \log(n))$ evaluation and interpolation;
• and so an $O(n \log(n))$ multiplication.
Complex numbers

\[z = e^{i\alpha} = \cos(\alpha) + i \sin(\alpha) \]

\[z^k_n = e^{\frac{2i\pi}{n}} \]

\[z_n = e^{\frac{2i\pi}{n}} \]
Roots of unity

Definition

• An \(n \text{th root of unity} \) is a complex number \(z \) such that \(z^n = 1 \).

• The \textit{primitive} \(n \text{th root of unity} \) is

\[
z_n = e^{\frac{2i\pi}{n}}
\]

Prop.

• The \(n \text{th roots of unity} \) are the powers

\[
z_n^0 = 1, \quad z_n, \quad z_n^2, \quad \ldots, \quad z_n^{n-1}
\]

• If \(m = n/2 \), then

\[
z_m = z_n^2.
\]
Examples

\[n = 4 \quad z_4^2 = -1 \quad z_4^0 = 1 \]

\[z_4^1 \quad z_4^3 = -z_4 \]
Examples

\[n = 8 \quad \begin{align*}
 z_8^4 &= -1 \\
 z_8^5 &= -z_8 \\
 z_8^6 &= -z_8^2 \\
 z_8^7 &= -z_8^3 \\
 z_8^0 &= 1
\end{align*} \]
Consider the \(n \)th roots of unity:

\[
z_0^n, \ldots, z_{n-1}^n,
\]

Then the operation \(\text{DFT}(\cdot, n) \) defined by

\[
F = f_0 + \cdots + f_{n-1}x^{n-1} \mapsto (F(z_0^n), \ldots, F(z_{n-1}^n))
\]

is called the \textbf{Discrete Fourier Transform} of order \(n \).

\textbf{Costs:}

- \textbf{naive algorithm:} \(O(n^2) \) operations.
- \textbf{FFT:} \(O(n \log(n)) \) operations for \(n \) a power of 2.
Squaring for n even

Goal: write a divide-and-conquer algorithm

- reduce an instance of size n to two instances of size $n/2$
- need to divide the number of points by 2
- same with the degree of the polynomials.

With $m = n/2$,

- squaring sends all nth roots of unity to mth roots;
- z_n^i and $z_{n+m}^i = -z_n^i$ have the same square.
Squaring for n even

$z_8^0 = 1$
$z_8^2 = 1$
$z_8^3 = -z_8$
$z_8^4 = -1$
$z_8^5 = -z_8$
$z_8^6 = -z_8$
$z_8^7 = -z_8$

$z_4^0 = 1$
$z_4^2 = -1$
$z_4^3 = -z_4$
$z_4^1 = z_4$
Any polynomial

\[F = f_0 + f_1 x + \cdots + f_{n-1} x^{n-1} \]

can be written

\[F = F_{\text{even}}(x^2) + x F_{\text{odd}}(x^2), \]

with

\[\deg(F_{\text{even}}) < n/2, \quad \deg(F_{\text{odd}}) < n/2. \]

Example, \(n = 4 \).

- \(F = 28 + 11x + 34x^2 - 55x^3 \)
- \(F_{\text{even}} = 28 + 34x \) \[F_{\text{even}}(x^2) = 28 + 34x^2 \]
- \(F_{\text{odd}} = 11 - 55x \) \[F_{\text{odd}}(x^2) = 11 - 55x^2 \]

This is the divide-and-conquer process for polynomials.
To evaluate $F(u)$, for some u in \mathbb{C}:

- evaluate $v = F_{\text{even}}(u^2)$
- evaluate $v' = F_{\text{odd}}(u^2)$
- deduce $F(u) = v + uv'$.

Danger: if we choose u_1, \ldots, u_{n-1} poorly, we have to evaluate two polynomials of degree $< n/2$ at n points.
Decomposition and evaluation

To evaluate $F(u)$, for some u in \mathbb{C}:

- evaluate $v = F_{\text{even}}(u^2)$
- evaluate $v' = F_{\text{odd}}(u^2)$
- deduce $F(u) = v + uv'$.

Given some u_0, \ldots, u_{n-1}, to evaluate all $F(u_0), \ldots, F(u_{n-1})$:

- evaluate all $v_i = F_{\text{even}}(u_i^2)$
- evaluate all $v'_i = F_{\text{odd}}(u_i^2)$
- deduce $F(u_i) = v_i + u_iv'_i$.
Decomposition and evaluation

To evaluate $F(u)$, for some u in \mathbb{C}:

- evaluate $v = F_{\text{even}}(u^2)$
- evaluate $v' = F_{\text{odd}}(u^2)$
- deduce $F(u) = v + uv'$.

Given some u_0, \ldots, u_{n-1}, to evaluate all $F(u_0), \ldots, F(u_{n-1})$:

- evaluate all $v_i = F_{\text{even}}(u_i^2)$
- evaluate all $v_i' = F_{\text{odd}}(u_i^2)$
- deduce $F(u_i) = v_i + u_iv_i'$.

Danger: if we choose u_1, \ldots, u_{n-1} poorly, we have to evaluate two polynomials of degree $< n/2$ at n points.
Suppose that the points \(u_i \) are \(n \)th roots of unity:

\[
z_0^n, \ldots, z_{n-1}^n,
\]

with \(n = 2m \). Then, their squares are

\[
z_0^m, \ldots, z_{m}^{m-1}
\]

\[
\text{FFT}(F, n) \quad n = 2^k
\]

- if \(n = 1 \), return \(f_0 \).
- let \(V = \text{FFT}(F_{\text{even}}, n/2) \)
 \[
 V = [v_0, \ldots, v_{n/2-1}]
 \]
- let \(V' = \text{FFT}(F_{\text{odd}}, n/2) \)
 \[
 V' = [v'_0, \ldots, v'_{n/2-1}]
 \]
- return \([V[i \mod n/2] + z_n^i V'[i \mod n/2] : 0 \leq i < n]\)
Master theorem, second version

Assumption: suppose that a function $T(n)$ satisfies

$$T(n) = 2T\left(\frac{n}{2}\right) + cn,$$

for n a power of 2.

Conclusion: $T(n) = \Theta(n \log(n))$, for n a power of 2.

Application: the cost $F(n)$ of the FFT algorithm satisfies

- $F(1) = 0$
- $F(n) = 2F(n/2) + \frac{3}{2}n$,

so $F(n) = \Theta(n \log(n))$.
Prop. Performing the inverse DFT in size n is done by

- performing a DFT at

 \[z_n^0, z_n^{-1}, \ldots, z_n^{-(n-1)} \]

- dividing the results by n.

This new DFT is the same as before:

\[z_n^{-i} = z_n^{n-i}, \]

so the outputs are just shuffled.

Consequence: the cost of the inverse DFT is $\Theta(n \log(n))$.
To multiply two polynomials F, G in $\mathbb{C}[x]$, of degrees $< m$:

• find $n = 2^k$ such that $H = FG$ has degree less than $n \quad n \leq 2m$
• compute $\text{DFT}(F, n)$ and $\text{DFT}(G, n)$ $O(n \log(n))$
• multiply the values to get $\text{DFT}(H, n)$ $O(n)$
• recover H by inverse DFT. $O(n \log(n))$

Cost: $O(n \log(n)) = O(m \log(m))$.
Why “Fourier Transform”?

In analysis, one uses the continuous Fourier Transform

$$k \mapsto \hat{f}(k) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i k t} dt.$$

In signal processing, discrete Fourier Transform, for discrete signals:

$$k \mapsto \hat{\varphi}(k) = \sum_{j=0}^{n-1} \varphi\left(\frac{j}{n}\right) e^{-\frac{2\pi i j k}{n}} = \sum_{j=0}^{n-1} \varphi\left(\frac{i}{n}\right) \left(e^{-\frac{2\pi i j k}{n}}\right)^j = \sum_{j=0}^{n-1} \varphi\left(\frac{j}{n}\right) \left(z_{kn}^k\right)^j = F(z_{kn}^k)$$

with

$$F(z) = \varphi(0) + \varphi\left(\frac{1}{n}\right)z + \cdots + \varphi\left(\frac{n-1}{n}\right)z^{n-1}.$$
Gauss or Fourier Transform?

<table>
<thead>
<tr>
<th>x</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^0</td>
<td>$6^0 48' \text{ Bor.} = + 408'$</td>
</tr>
<tr>
<td>30</td>
<td>$1 29 \ldots \ldots \ldots + 89$</td>
</tr>
<tr>
<td>60</td>
<td>$1 6 \text{ Austr.} \ldots - 66$</td>
</tr>
<tr>
<td>90</td>
<td>$0 10 \text{ Bor.} \ldots + 10$</td>
</tr>
<tr>
<td>120</td>
<td>$5 38 \ldots \ldots \ldots + 338$</td>
</tr>
<tr>
<td>150</td>
<td>$13 27 \ldots \ldots \ldots + 807$</td>
</tr>
<tr>
<td>180</td>
<td>$20 38 \ldots \ldots \ldots + 1238$</td>
</tr>
<tr>
<td>210</td>
<td>$25 11 \ldots \ldots \ldots + 1511$</td>
</tr>
<tr>
<td>240</td>
<td>$26 23 \ldots \ldots \ldots + 1583$</td>
</tr>
<tr>
<td>270</td>
<td>$24 22 \ldots \ldots \ldots + 1462$</td>
</tr>
<tr>
<td>300</td>
<td>$19 43 \ldots \ldots \ldots + 1183$</td>
</tr>
<tr>
<td>330</td>
<td>$13 24 \ldots \ldots \ldots + 804$</td>
</tr>
</tbody>
</table>

Distribuamus hanc periodum primo in tres periodos quaternorum terminorum

$a = 0^0$	$A = + 408$	$a' = 30^0$	$A' = + 89$	$a'' = 60^0$	$A'' = - 66$
$b = 90^0$	$B = + 10$	$b' = 120^0$	$B' = + 338$	$b'' = 150^0$	$B'' = + 807$
$c = 180^0$	$C = + 1238$	$c' = 210^0$	$C' = + 1511$	$c'' = 240^0$	$C'' = + 1583$
$d = 270^0$	$D = + 1462$	$d' = 300^0$	$D' = + 1183$	$d'' = 330^0$	$D'' = + 804$
Multivariate polynomials
Multivariate polynomials

Things are usually more complicated
 • the degree is not the proper measure anymore;
 • the shape of the set monomials becomes more important.

Empirically, many problems in several variables are sparse
 • in the sparsest possible case, the naive algorithm is optimal.
One useful trick, **Kronecker substitution**:

- works for **any** multivariate polynomials;
- good for polynomials $F(x_1, \ldots, x_n)$ with
 \[
 \deg(F, x_1) < d_1, \ldots, \deg(F, x_n) < d_n;
 \]
- reduces to **univariate** polynomial multiplication.

Aber es ist schon an sich (theoretisch) auch für Funktionen mehrerer Variablen vollkommen ausreichend, da eine ganze Funktion von $x, x', x'', x''', \ldots, x^{(s)}$, wenn
\[
x' = c_1 x^0, \quad x'' = c_2 x^s, \quad x''' = c_3 x^{s^2}, \quad \ldots \quad x^{(s)} = c_s x^{s^2}
\]
gesetzt und g hinreichend groß genommen wird, in eine ganze Function
Kronecker’s substitution on an example

\[F = (1 + 3x_1 + 4x_1^2) + (22 + x_1 - x_1^2)x_2 + (-3 - 3x_1 + 2x_1^2)x_2^2 \]
\[= F_0(x_1) + F_1(x_1)x_2 + F_2(x_1)x_2^2 \]

\[G = (-2 + x_1 + x_1^2) + (4 + x_1 + 3x_1^2)x_2 + (3 - x_1 + x_1^2)x_2^2 \]
\[= G_0(x_1) + G_1(x_1)x_2 + G_2(x_1)x_2^2 \]

Then \(H = FG \) is

\[H = F_0G_0 \]
\[+ (F_0G_1 + F_1G_0)x_2 \]
\[+ (F_0G_2 + F_1G_1 + F_2G_0)x_2^2 \]
\[+ (F_1G_2 + F_2G_1)x_2^3 \]
\[+ F_2G_2x_2^4 \]
Kronecker’s substitution on an example

- Remark that all $F_i(x_1)G_j(x_1)$ have degree at most 4
- So we replace x_2 by x_1^5

\[
\begin{align*}
F^* &= (1 + 3x_1 + 4x_1^2) + (22 + x_1 - x_1^2)x_1^5 + (-3 - 3x_1 + 2x_1^2)x_1^{10} \\
&= F_0(x_1) + F_1(x_1)x_1^5 + F_2(x_1)x_1^{10} \\
G^* &= (-2 + x_1 + x_1^2) + (4 + x_1 + 3x_1^2)x_1^5 + (3 - x_1 + x_1^2)x_1^{10} \\
&= G_0(x_1) + G_1(x_1)x_1^5 + G_2(x_1)x_1^{10}
\end{align*}
\]
Kronecker’s substitution on an example

After multiplying F^* and G^*:

$$H^* = F_0 G_0 + (F_0 G_1 + F_1 G_0)x_1^5 + (F_0 G_2 + F_1 G_1 + F_2 G_0)x_1^{10} + (F_1 G_2 + F_2 G_1)x_1^{15} + F_2 G_2 x_1^{20}$$

Because $\text{deg}(F_i G_j) \leq 4$, there is no overlap. So we can directly read off the result.