CS 487 /...

Introduction to Symbolic Computation

University of Waterloo
Éric Schost
eschost@uwaterloo.ca
The exponent of linear algebra
Main idea

All problems of linear algebra are more or less equivalent.

More precisely

• the exponent of a problem P (multiplication, inverse, ...) is a number ω_P such that one can solve problem P for matrices of size n in time $O(n^{\omega_P})$.

• then

$$\omega_{\text{product}} = \omega_{\text{inverse}} = \omega_{\text{determinant}} = \cdots$$
Inverse \implies multiplication

Suppose we want to multiply two matrices A and B, but all that we have is an algorithm for inverse.

Define

$$D = \begin{bmatrix} I_n & A & 0 \\ 0 & I_n & B \\ 0 & 0 & I_n \end{bmatrix}$$

Then

$$D^{-1} = \begin{bmatrix} I_n & -A & AB \\ 0 & I_n & -B \\ 0 & 0 & I_n \end{bmatrix}$$

So product in size n can be done using inverse in size $3n$, so in time

$$O\left((3n)^{\omega_{\text{inverse}}} \right) = O\left(n^{\omega_{\text{inverse}}} \right).$$
Suppose we want to invert a matrix A of size $n = 2^k$. We cut A into blocks of size $m = n/2$:

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}.$$

and do as if we invert a 2×2 matrix.

$$\begin{bmatrix} I_m & 0 \\ -A_{2,1}A_{1,1}^{-1} & I_m \end{bmatrix} A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ 0 & S \end{bmatrix}, \quad S = A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2},$$

so

$$A^{-1} = \begin{bmatrix} A_{1,1}^{-1} & -A_{1,1}^{-1}A_{1,2}S^{-1} \\ 0 & S^{-1} \end{bmatrix} \begin{bmatrix} I_m & 0 \\ -A_{2,1}A_{1,1}^{-1} & I_m \end{bmatrix}.$$
Complexity:

\[I(n) \leq 2I(n/2) + Cn^{\omega_{\text{product}}} \]

implies

\[I(n) \leq C'n^{\omega_{\text{product}}} \]

Proof: some form of the master theorem.

Remark 1: we need our matrices to be “nice for this to work. \(A_{1,1} \) may be not invertible, even if \(A \) is.

Remark 2: this also gives the determinant.
Automatic differentiation
Partial derivatives

Def: if $F(X_1, \ldots, X_N)$ is a polynomial in N variables, we define the partial derivatives

\[
\frac{\partial F}{\partial X_1}, \ldots, \frac{\partial F}{\partial X_N},
\]

where

\[
\frac{\partial F}{\partial X_i}
\]

is obtained by keeping all other X_j constant, and differentiating in X_i.

Example: with

\[
F = X_1X_2 - X_3X_4,
\]

we get

\[
\frac{\partial F}{\partial X_1} = X_2, \quad \frac{\partial F}{\partial X_2} = X_1, \quad \frac{\partial F}{\partial X_3} = -X_4, \quad \frac{\partial F}{\partial X_4} = -X_3.
\]
Automatic differentiation

Prop.

- If F can be computed using L operations $+,-,\times$, then **all** partial derivatives

$$\frac{\partial F}{\partial X_1}, \ldots, \frac{\partial F}{\partial X_N},$$

can be computed using $4L$ operations.

- Independent of N.

Remarks

- widely used for optimization (using Newton’s iteration in several variables)

- some polynomials (such as $(X - 1)^k$) can be computed using few operations ($L = O(\log(k))$), even though they have a lot of monomials.
A naive solution

We are given a program Γ with input variables X_1, \ldots, X_N.

Example:

\[
G_1 = X_1 - X_2 \\
G_2 = G_1^2 \\
G_3 = G_2X_3
\]

computes $(X_1 - X_2)^2X_3$, with $L = 3$.
A naive solution

We are given a program Γ with input variables X_1, \ldots, X_N.

Example:

$$
G_1 = X_1 - X_2 \\
G_2 = G_1^2 \\
G_3 = G_2X_3
$$

computes $(X_1 - X_2)^2X_3$, with $L = 3$.

We can follow line-by-line and apply the rules for differentiation. This is called the **direct mode**.

<table>
<thead>
<tr>
<th>G_i</th>
<th>$\partial G_i/\partial X_1$</th>
<th>$\partial G_i/\partial X_2$</th>
<th>$\partial G_i/\partial X_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_1 = X_1 - X_2$</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$G_2 = G_1^2$</td>
<td>$2G_1 \partial G_1/\partial X_1$</td>
<td>$2G_1 \partial G_1/\partial X_2$</td>
<td>$2G_1 \partial G_1/\partial X_3$</td>
</tr>
<tr>
<td>$G_3 = X_3G_2$</td>
<td>$X_3 \partial G_2/\partial X_1$</td>
<td>$X_3 \partial G_2/\partial X_2$</td>
<td>$X_3 \partial G_2/\partial X_3 + G_2$</td>
</tr>
</tbody>
</table>

Total: $O(NL)$
The reverse mode

Setup.

- Let \(G_1, \ldots, G_L \) be the polynomials computed by \(\Gamma \).
- Let \(\Delta \) the program in variables \(X_1, \ldots, X_N, Y \) obtained by removing the first line of \(\Gamma \) and replacing \(G_1 \) by \(Y \). Let \(D_2, \ldots, D_L \) be the polynomials it computes.

Example: with \(\Gamma \) given by

\[
\begin{align*}
G_1 &= X_1 \times X_2 \\
G_2 &= G_1 + X_1 \\
G_3 &= G_1 \times G_2
\end{align*}
\]

\[
\begin{align*}
G_1 &= X_1X_2 \\
G_2 &= X_1X_2 + X_1 \\
G_3 &= X_1^2X_2^2 + X_1^2X_2
\end{align*}
\]

We get \(\Delta \) given by

\[
\begin{align*}
D_2 &= Y + X_1 \\
D_3 &= Y \times D_2
\end{align*}
\]

\[
\begin{align*}
D_2 &= Y + X_1 \\
D_3 &= Y^2 + YX_1
\end{align*}
\]
Prop. \(G_L = D_L(X_1, \ldots, X_N, G_1(X_1, \ldots, X_N)) \)
The reverse mode

Prop. \(G_L = D_L(X_1, \ldots, X_N, G_1(X_1, \ldots, X_N)) \)

Corollary For all \(i = 1, \ldots, N \),

\[
\frac{\partial G_L}{\partial X_i} = \frac{\partial D_L}{\partial X_i}(X_1, \ldots, X_N, G_1) + \frac{\partial D_L}{\partial Y}(X_1, \ldots, X_N, G_1) \frac{\partial G_1}{\partial X_i}.
\]
The reverse mode

Prop. \(G_L = D_L(X_1, \ldots, X_N, G_1(X_1, \ldots, X_N)) \)

Corollary For all \(i = 1, \ldots, N \),

\[
\frac{\partial G_L}{\partial X_i} = \frac{\partial D_L}{\partial X_i}(X_1, \ldots, X_N, G_1) + \frac{\partial D_L}{\partial Y}(X_1, \ldots, X_N, G_1) \frac{\partial G_1}{\partial X_i}.
\]

Key remark. \(G_1 \) has one of the following shapes

\(X_a + X_b, \ X_aX_b, \ \lambda X_a, \ \lambda + X_a, \ \lambda. \)

So for \(i \not\in \{a, b\}, \ \frac{\partial G_L}{\partial X_i} = \frac{\partial D_L}{\partial X_i}. \) For \(i \in \{a, b\}, \ \frac{\partial G_L}{\partial X_i} \) can be deduced from \(\frac{\partial D_L}{\partial X_i} \) and \(\frac{\partial D_L}{\partial Y} \) in at most 4 operations.

Conclusion. Suppose we know a program \(\Delta' \) that augments \(\Delta \) by computing all partial derivatives of \(D_L \) in \(X_1, \ldots, X_N, Y \). Then we can deduce a program \(\Gamma' \) of length \(\leq L(\Delta') + 4 \), that computes all partial derivatives of \(G_L \).
Corollary. Continuing inductively to remove the first lines, we finally obtain a program of length 1.

- The gradient of such a program is easy to compute.
- Then we can go backward to recover the gradient of G_L, adding a bounded number of operations (at most 4) at each step.

So the gradient of G_L can be computed using $4L$ operations.
We detail the previous example. Removing the first instruction in Δ gives the program

$$
\Phi \ E_3 = Y \times Z \quad | \quad E_3(X_1, X_2, Y, Z) = YZ.
$$

Hence,

$$
\frac{\partial E_3}{\partial X_1} = \frac{\partial E_3}{\partial X_2} = 0, \quad \frac{\partial E_3}{\partial Y} = Z, \quad \frac{\partial E_3}{\partial Z} = Y
$$

So the program Φ' computes E_3 and its gradient:

$$
\Phi' \quad | \quad \begin{align*}
E_3 &= Y \times Z \\
E_{3,x_{12}} &= 0 \quad \text{(gives $\frac{\partial E_3}{\partial X_1}$ and $\frac{\partial E_3}{\partial X_2}$)} \\
E_{3,Y} &= Z \quad \text{(gives $\frac{\partial E_3}{\partial Y}$)} \\
E_{3,Z} &= Y \quad \text{(gives $\frac{\partial E_3}{\partial Z}$)}
\end{align*}
$$
Example

Recall that \(D_3(X_1, X_2, Y) = E_3(X_1, X_2, Y, Y + X_1) \), so

\[
\frac{\partial D_3}{\partial X_1, X_2, Y} = \frac{\partial E_3}{\partial X_1, X_2, Y}(X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z}(X_1, X_2, Y, Y + X_1) \frac{\partial (Y + X_1)}{\partial X_1, X_2, Y}
\]
Recall that $D_3(X_1, X_2, Y) = E_3(X_1, X_2, Y, Y + X_1)$, so

$$\frac{\partial D_3}{\partial X_1, X_2, Y} = \frac{\partial E_3}{\partial X_1, X_2, Y}(X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z}(X_1, X_2, Y, Y + X_1) \frac{\partial (Y + X_1)}{\partial X_1, X_2, Y}$$

and thus

$$\frac{\partial D_3}{\partial X_1} = \frac{\partial E_3}{\partial X_1}(X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z}(X_1, X_2, Y, Y + X_1)$$

$$\frac{\partial D_3}{\partial X_2} = \frac{\partial E_3}{\partial X_2}(X_1, X_2, Y, Y + X_1)$$

$$\frac{\partial D_3}{\partial Y} = \frac{\partial E_3}{\partial Y}(X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z}(X_1, X_2, Y, Y + X_1)$$
Example

Recall that \(D_3(X_1, X_2, Y) = E_3(X_1, X_2, Y, Y + X_1) \), so

\[
\frac{\partial D_3}{\partial X_1, X_2, Y} = \frac{\partial E_3}{\partial X_1, X_2, Y}(X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z}(X_1, X_2, Y, Y + X_1) \frac{\partial (Y + X_1)}{\partial X_1, X_2, Y}
\]

and thus

\[
\frac{\partial D_3}{\partial X_1} = \frac{\partial E_3}{\partial X_1}(X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z}(X_1, X_2, Y, Y + X_1) \\
\frac{\partial D_3}{\partial X_2} = \frac{\partial E_3}{\partial X_2}(X_1, X_2, Y, Y + X_1) \\
\frac{\partial D_3}{\partial Y} = \frac{\partial E_3}{\partial Y}(X_1, X_2, Y, Y + X_1) + \frac{\partial E_3}{\partial Z}(X_1, X_2, Y, Y + X_1)
\]

yielding the program \(\Delta' \)

\[
\begin{align*}
D_2 &= Y + X_1 \\
D_3 &= Y \times D_2 \\
E_{3,X_{12}} &= 0 \\
E_{3,Y} &= D_2 \\
E_{3,Z} &= Y \\
D_{3,X_1} &= E_{3,X_{1,2}} + E_{3,Z} \\
D_{3,Y} &= E_{3,Y} + E_{3,Z}
\end{align*}
\]

(gives \(\frac{\partial D_3}{\partial X_2} \))

(gives \(\frac{\partial D_3}{\partial X_1} \))

(gives \(\frac{\partial D_3}{\partial Y} \)
Recall that $G_3(X_1, X_2) = E_3(X_1, X_2, X_1X_2)$, so

$$\frac{\partial G_3}{\partial X_1} = \frac{\partial D_3}{\partial X_1}(X_1, X_2, X_1X_2) + \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1X_2) \frac{\partial X_1X_2}{\partial X_1}$$

$$= \frac{\partial D_3}{\partial X_1}(X_1, X_2, X_1X_2) + X_2 \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1X_2)$$

$$\frac{\partial G_3}{\partial X_2} = \frac{\partial D_3}{\partial X_2}(X_1, X_2, X_1X_2) + \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1X_2) \frac{\partial X_1X_2}{\partial X_2}$$

$$= \frac{\partial D_3}{\partial X_2}(X_1, X_2, X_1X_2) + X_1 \frac{\partial D_3}{\partial Y}(X_1, X_2, X_1X_2)$$
This finally yields

\[
\Gamma' = \begin{align*}
G_1 &= X_1 \times X_2 \\
G_2 &= G_1 + X_1 \\
G_3 &= G_1 \times G_2 \\
E_{3,X_{1,2}} &= 0 \\
E_{3,Y} &= G_2 \\
E_{3,Z} &= G_1 \\
D_{3,X_1} &= E_{3,X_{1,2}} + E_{3,Z} \\
D_{3,Y} &= E_{3,Y} + E_{3,Z} \\
tmp_1 &= D_{3,Y} \times X_2 \\
G_{3,X_1} &= D_{3,X_1} + tmp_1 \quad (\text{gives } \frac{\partial G_3}{\partial X_1}) \\
tmp_2 &= D_{3,Y} \times X_1 \\
G_{3,X_2} &= E_{3,X_{1,2}} + tmp_2 \quad (\text{gives } \frac{\partial G_3}{\partial X_2})
\end{align*}
\]
Back to matrix computations
Differentiating the determinant

Using automatic differentiation, an algorithm for the **determinant** gives an algorithm for **inverse**.

Prop. Let \(A = [a_{i,j}] \) be a matrix of size \(n \), whose entries are variables.

- The derivatives of the determinant of \(A \) w.r.t. \(a_{1,1}, \ldots, a_{n,n} \) are (almost) the entries of \(A^{-1} \).

“Proof” (on an example): \(n = 3 \). Take

\[
A = \begin{bmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{bmatrix}
\]

so

\[
\text{det}(A) = a_{1,1}a_{2,2}a_{3,3} - a_{1,1}a_{2,3}a_{3,2} + a_{2,1}a_{3,2}a_{1,3} \\
- a_{2,1}a_{1,2}a_{3,3} + a_{3,1}a_{1,2}a_{2,3} - a_{3,1}a_{2,2}a_{1,3}.
\]
Example with $n = 3$

Take the partial derivatives:

\[
\frac{\partial A}{\partial a_{1,1}} = a_{2,2}a_{3,3} - a_{2,3}a_{3,2}
\]
\[
\frac{\partial A}{\partial a_{1,2}} = a_{3,1}a_{2,3} - a_{1,2}a_{3,3}
\]
\[
\frac{\partial A}{\partial a_{1,3}} = a_{2,1}a_{3,2} - a_{3,1}a_{2,2}, \text{ etc} \ldots
\]

whereas the entries of $B = A^{-1}$ are

\[
b_{1,1} = \frac{a_{2,2}a_{3,3} - a_{2,3}a_{3,2}}{\det(A)}
\]
\[
b_{2,1} = \frac{a_{3,1}a_{2,3} - a_{1,2}a_{3,3}}{\det(A)}
\]
\[
b_{3,1} = \frac{a_{2,1}a_{3,2} - a_{3,1}a_{2,2}}{\det(A)}, \text{ etc} \ldots
\]
Suppose we have a program using L additions / subtractions / multiplications that computes the determinant of A.

(No division because I don’t want to bother with the issues of division by zero)

Then we can turn it into a program that computes all entries of A^{-1} using $O(L)$ additions / subtractions / multiplications, and 1 division (by the determinant).