Assignment 3

CS 487/687 – CM 730
due MONDAY, March 12, 5pm
February 24, 2018

Submission by email to cs487@student.cs.uwaterloo.ca

1. (6 marks) Give the steps of the XGCD algorithm with inputs $A_0 = 3 + x - x^2 + x^3$ and $A_1 = 1 - x + x^2$.

2. (6 marks) Consider the sequence $(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots)$. Using the XGCD algorithm, find a linear recurrence of order 2, with constant coefficients, that is satisfied by this sequence.

3. (12 marks) Define $\psi = 1 + \sqrt{7}$.
 - Find a polynomial P of degree 2 with rational coefficients such that $P(\psi) = 0$
 - Use Euclidean division and XGCD computation to express $\psi/(2\psi + 1)$ as $a_0 + a_1 \psi$,
 with a_0, a_1 rational numbers.
 - More generally, how could you rewrite an expression such as
 $$e_0 + e_1 \psi + \cdots + e_{d-1} \psi^{d-1}$$
 $$f_0 + f_1 \psi + \cdots + f_{d-1} \psi^{d-1},$$
 where all e_i and f_i are rationals? Using the results given for the complexity of Euclidean division and XGCD computation, give the complexity of finding the simplified form (in terms of d), assuming that the denominator does not vanish.

4. (18 marks) Remember that the Fibonacci numbers are defined by
 $$f_0 = 0, \quad f_1 = 1, \quad f_{n+2} - f_{n+1} - f_n = 0.$$
 We will admit that $f_n \simeq 0.447 \cdot 1.61^n$ for $n \to \infty$.
 (a) Compute $f_0, f_1, f_2, f_3, f_4, f_5, f_6$.

1
(b) Consider the algorithm
\[\text{fib}(n) \]
- if \(n = 0 \) then return 0
- if \(n = 1 \) then return 1
- return \(\text{fib}(n - 2) + \text{fib}(n - 1) \)

Let \(F_n \) be the number of operations in \(\mathbb{Q} \) done in this algorithm (there are only additions, actually). “If” and “return” are free. Show that
\[
F_0 = 0, \ F_1 = 0, \ F_2 = 1, \ F_3 = 2, \ F_4 = 4, \ F_5 = 7
\]
and that the sequence \((F_n) \) satisfies the recurrence
\[
F_n - F_{n-1} - F_{n-2} = 1 \quad (1)
\]
for \(n = 2, 3, 4, \ldots \).

(c) By comparing these values to the Fibonacci numbers, guess and prove a relation between the sequences \((F_n) \) and \((f_n) \). Deduce that the running time of \text{fib} is exponential in \(n \).

\textit{The goal of this problem is to show how to derive this result without guessing anything.}

(d) Prove that
\[
x^2 + x^3 + x^4 + x^5 + \cdots = \frac{x^2}{1 - x}.
\]

(e) Let \(S \) be the generating series
\[
S = F_0 + F_1 x + F_2 x^2 + \cdots = \sum_{n \geq 0} F_n x^n.
\]

Using the same kind of summation as we did in class, show that
\[
S = \frac{x^2}{(1 - x)(1 - x - x^2)}.
\]

(f) Rewrite \(S \) as
\[
S = \frac{a}{1 - x} + \frac{b}{1 - x - x^2},
\]
for some constants \(a, b \) in \(\mathbb{Q} \). Explain how you found \(a \) and \(b \) (using an XGCD calculation would be a good idea).

(g) Use the latter expression to recover the relation between the sequences \((F_n) \) and \((f_n) \).
5. (10 marks) Given points a_1, \ldots, a_n and values v_1, \ldots, v_n, with $a_i \neq a_j$ for $i \neq j$, we want to find a rational function $P = \frac{N}{D}$, with $\deg(N) < n/2$ and $\deg(D) = n/2$ such that $P(a_i) = v_i$ for all i.

Suppose that we know a polynomial $Q(x)$ of degree less than n such that $Q(a_i) = v_i$ for all i. Let also $M = (x - a_1) \cdots (x - a_n)$. Using the same idea as for the rational function reconstruction seen in class, explain how you could solve your problem by applying the XGCD algorithm to Q and M.

I’m not asking for a detailed proof, but for the idea of the algorithm, and an informal justification of why it should work.

6. (2 marks) How much time did you spend on the assignment?