Section 10.1

Thm 10.1: Some example of the polynomials $x^p - x$ over $\mathbb{Z}/(p)$.

```maple
> for i to 3 do
> p := ithprime(i);
> print(p, Factor(x^p-x) mod p);
> od:
2, (x + 1) x
3, (x + 1) x (x + 2)
5, (x + 4) (x + 1) x (x + 3) (x + 2)
```

Section 10.2

Thm 10.2: An example of the polynomial $x^{(p^d)} - x$ over $\mathbb{Z}/(p)$.

Consider $p = 3$ and $d = 4$.

```maple
> Factor(x^(3^4)-x) mod 3;
4 4 3 2 4 2 4 3 2 (x + x + 2) (x + x + x + 1) (x + x + 2 x + 1) (x + x + x + 2 x + 2)
4 3 2 2 4 3 2 4 3 (x + 2 x + x + 1) (x + 2 x + 2) (x + 2 x + x + 1) (x + 1)
4 3 2 2 4 3 2 (x + 2 x + 2 x + x + 2) (x + 2 x + 2) (x + x + 2) (x + 1)
4 3 2 4 3 2 4 3 2 (x + 2 x + x + x + 2) (x + x + 2 x + 2 x + 2) (x + x + 2 x + 1) x
4 2 4 2 4 3 2 4 3 (x + x + 2) (x + 2 x + 2) (x + x + x + x + 1) (x + 2 x + 2)
```
We know that \(x^{(3^4)} - x \) is the product of all irreducible of degree 1, 2 and 4. From inspecting the factorization above we can see that there are 18 irreducibles of degree 4 over \(\mathbb{Z}/(3)[x] \).

But note that we can directly enumerate the number of distinct irreducibles of degree \(d \) over \(\mathbb{Z}/(p) \), without factoring.

Question: How many distinct irreducibles of degree \(i \) are there over \(\mathbb{Z}/(3) \) for \(i = 1, 2, 3, 4 \)?

Derivation:

Let \(k_i \) be the number of distinct irreducibles of degree \(i \) over \(\mathbb{Z}/(3) \). Then we can set up a system of linear equations.

\[
\begin{align*}
\text{degree}(x - x, x) &= k_1, & \# 1 \text{ divisible by 1} \\
\text{degree}(x^{(3^2)} - x, x) &= k_1 + k_2, & \# 2 \text{ divisible by 1, 2} \\
\text{degree}(x^{(3^3)} - x, x) &= k_1 + k_3, & \# 3 \text{ divisible by 1, 3} \\
\text{degree}(x^{(3^4)} - x, x) &= k_1 + k_2 + k_4, & \# 4 \text{ divisible by 1, 2, 4}
\end{align*}
\]

\(\text{sys} := \{\text{degree}(x^3-x, x) = k_1, \text{degree}(x^{(3^2)}-x, x) = k_1 + 2 k_2, \text{degree}(x^{(3^3)}-x, x) = k_1 + 3 k_3, \text{degree}(x^{(3^4)}-x, x) = k_1 + 2 k_2 + 4 k_4\} \)

\(\text{vars} := \{k_1, k_2, k_3, k_4\} \)

\(\text{solve(sys, vars)}; \)

\(\{k_1 = 3, k_2 = 3, k_3 = 8, k_4 = 18\} \)

As an aside, it is easy to derive the following function. In Maple,
"option remember" stores the results of previous function calls so they
don't need to be recomputed (or manually stored in a table like
dynamic programming).
#
Input: p - a prime
d - an integer in Z_{>=1}
#
Output: the number of distinct irreducibles of degree d over Z/(p)[x]
#
> foo := proc(p,d)
> option remember;
> local i,c;

> if d=1 then return p fi; # the degree of x^p - x

> # compute sum of degrees of all irreducibles in x^(p^d) - x of deg < d
> c := 0;
> for i to d-1 do # degree i # no. of irred. of degree i
> if modp(d,i)=0 then c := c + i * foo(p,i) fi
> od;

> return iquo(p^d - c,d);
>
> end:

> foo(3,4);

18

Some more checks that foo is correct:
#
> degree(x^(5^4) - x,x) = foo(5,1)*1 + foo(5,2)*2 + foo(5,4)*4;
625 = 625

> degree(x^(17^26) - x,x) = foo(17,1)*1 + foo(17,2)*2 + foo(17,26)*26;
98100666009922840441972689847969 = 98100666009922830537394656942049

##
#
A key computational tool (for efficiency) that is used in the factoring
algorithm is binary powering modulo another polynomial. This is
algorithm "RepeatedSquaring" in the script.

One possible implementation is in the posted example "mypowmod.mpl".

This operation is important enough that Maple has a built-in function for it, namely Powmod.

Here is an example of an application of Powmod.

Generate a rather large degree random polynomial with many factors modulo 3.

> f := mul(Randpoly(i,x)^i mod 3, i=1..60): f := Expand(f) mod 3;

Let's not print out f! But do look at its degree.

> degree(f,x);

73810

Compute the product of all irreducibles of degree 1 that divide f. (One copy of each).

> g1 := Gcd(x^3-x,f) mod 3;

3
g1 := x + 2 x

Check that f1 has only linear factors:

> Factor(g1) mod 3;

(x + 1) x (x + 2)

To obtain all irreducibles of f of degree 1 (with multiplicity) we can compute the gcd of f with a high power of (x^3 - x). Since a linear factor can divide f at most deg f times, it suffices to compute

> g1_with_multiplicities := Gcd((x^3-x)^degree(f,x), f) mod 3;

> Factor(%) mod 3;

704 979 1119

(x + 1) x (x + 2)
Instead of first computing \((x^3 - x)^\deg(f, x)\) and then taking the gcd, it is more efficient (polynomial time vs. exponential time!) to compute \(\text{Rem}((x^3-x)^\deg(f, x), f)\) using repeated squaring and then take the gcd:

\[
> \text{Gcd}(\text{Powmod}((x^3-x)^\deg(f, x), f, x), f) \mod 3;
> \text{Factor}(\%) \mod 3;
\]

\[
\begin{array}{ccc}
704 & 979 & 1119 \\
(x + 1) & x & (x + 2)
\end{array}
\]

The above idea is used in the posted example "DDFact.mpl" which gives a function to compute the distinct degree factorization of the squarefree part of \(f\) (even if \(f\) itself is not squarefree).

Note: To improve the efficiency of that routine the computation \(g^{\lceil n/i \rceil}\) should be replaced with the appropriate call to Powmod.

Section 10.2

Let us first illustrate Thm 10.3.

We know that \(R = \mathbb{Z}/(p)\) for \(p\) a prime is finite field with \(p\) element, in particular it is simply the set \(\{0, 1, ..., p-1\}\) with addition and multiplication modulo \(p\).

The first part of Thm 10.3 states that if \(h\) is an irreducible of degree \(d\) then \(R[x]/\langle h \rangle\) is finite field with \(p^d\) elements.

As an example, consider \(p = 3\) (so \(R = \mathbb{Z}/(3)\)) and \(d = 2\).

\[
> h := x^2 + 1; \quad \text{irred. of degree 2 over } \mathbb{Z}/(3) \\
> h := x + 1
\]

Then \(RR = R[x]/\langle h \rangle\) is a finite field with \(p^d = 3^2 = 9\) elements. The elements of \(RR\) is all polynomials over \(R[x]\) of degree strictly less than 2 (i.e., the distinct polynomials of \(R[x]\) modulo \(h\)).
> RR := {seq(seq(i*x + j, i=0..2), j=0..2)};
> RR := {0, 1, 2, x, 2*x, x + 1, x + 2, 2*x + 1, 2*x + 2}

Addition/subtraction in R is just addition/subtraction modulo 3.
Multiplication is done modulo h, e.g., the product of (x+2) * (2*x+1) is
Rem((x+2)*(2*x+1), h, x) mod 3;
> 2*x

The second part of Thm 10.3 should be familiar from our study
of the Chinese remainder theorem, and algorithm such as multi-modular
reduction.

Now consider Thm 10.4.
First consider a prime Z/(p). The theorem says that any nonzero
element of Z/(p), when raised to the power (p-1)/2, will be equal
to 1 or -1, with exactly half equal to 1. Some experimental
confirmation of the theorem.
> for i to 5 do
> p := ithprime(i);
> S := [seq(a, a=1..p-1)]; # nonzero elements of Z/(p)
> R := map(a->mods(a^((p-1)/2), p), S);
> print(p, S, R);
> od:
> 2, [1], [1]
> 3, [1, 2], [1, -1]
> 5, [1, 2, 3, 4], [1, -1, -1, 1]
> 7, [1, 2, 3, 4, 5, 6], [1, 1, -1, 1, -1, -1]
> 11, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1, -1, 1, 1, -1, -1, -1, 1, -1, 1]
Obviously, if we select an element of \{1,2,...,p-1\} uniformly
at random, then with probably 1/2 it will be a quadratic residue
and with probability 1-1/2=1/2 it will not be a non-quadratic residue.
#
Now let's give an illustration of the equal degree factorization
on page 4 of the script. Let \(R = \mathbb{Z}/(p) \), \(p = 10000019 \).
#
\begin{verbatim}
> p := 10000019;
p := 10000019

> d := 2;
d := 2

> h1 := x^2+2090578*x+4297752: # irred. of degree 2
> h2 := x^2+4958404*x+3788058: # irred. of degree 2
> f := Expand(h1*h2) mod p;

 4 3 2
f := x + 7048982 x + 8708093 x + 5889928 x + 2913426

Our goal is to factor \(f \) over \(\mathbb{R}[x] \). (Pretend we don't know \(h1 \) and \(h2 \).)
#
The residue class ring
#
\(R/<f> \equiv R/<h1> \times R/<h2> \) (*)
#
contains \((p)^2 \) elements, of which \((p-1)^2 \) are relatively prime to \(f \). (Why?)
#
Four of the elements that are relatively prime to \(f \) are
\(S = \{ (1,1),(1,-1),(-1,1),(-1,-1) \} \): our goal is to uniformly and randomly
select one of these four elements.
On the left hand side of (*) the elements of \(S \) correspond to \{\(e1,e2,e2,e4 \}\):
#
\begin{verbatim}
> Gcdex(h1,h2,x,'s','t') mod p;

 1

> e1 := Rem((1)*s*h1 + (1)*t*h2,f,x) mod p;

e1 := 1

> e2 := Rem((-1)*s*h1 + (1)*t*h2,f,x) mod p;

\end{verbatim}
\end{verbatim}

7
e2 := 2017226 \cdot x + 4937057 \cdot x + 544669 \cdot x + 3886491

\texttt{> e3 := Rem((1)*s*h1 + (-1)*t*h2,f,x) mod p;}
\begin{align*}
\texttt{e3} &:= 7982793 \cdot x + 5062962 \cdot x + 9455350 \cdot x + 6113528
\end{align*}

\texttt{> e4 := Rem((-1)*s*h1 + (-1)*t*h2,f,x) mod p;}
\texttt{e4} := 10000018

Note that subtracting (1,1) from the elements in S gives the set
\{ (0,0), (0,-2), (-2,0), (-2,-2) \}: some of these (in this case
two) have the nice property that they "split" the polynomial f:
#
> \texttt{Gcd(e1-1,f) mod p; # should give us f (useless)}
\begin{align*}
\texttt{4} &\quad 3 \quad 2 \\
\texttt{x + 7048982} &\quad \texttt{x + 8708093} &\quad \texttt{x + 5889928} &\quad \texttt{x + 2913426}
\end{align*}

> \texttt{Gcd(e2-1,f) mod p; # should give us h1 (great!)}
\begin{align*}
\texttt{2} &\\
\texttt{x + 2090578} &\quad \texttt{x + 4297752}
\end{align*}

> \texttt{Gcd(e3-1,f) mod p; # should give us h2 (great!)}
\begin{align*}
\texttt{2} &\\
\texttt{x + 4958404} &\quad \texttt{x + 3788058}
\end{align*}

> \texttt{Gcd(e4-1,f) mod p; # should give us 1 (useless)}
\begin{align*}
1
\end{align*}

Our goal is to select an element from \{e1,e2,e2,e4\} uniformly at random.
To do so, we make use of Thm 10.4.
First choose a random polynomial of degree < 4.
#
> \texttt{u := Randpoly(4,x) mod p; # returns a random polynomial of degree 4}
\begin{align*}
\texttt{4} &\quad 3 \quad 2 \\
\texttt{u} &:= 10323 \cdot x + 1265632 \cdot x + 4335155 \cdot x + 3429475 \cdot x + 2575038
\end{align*}

> \texttt{u := u - lcoeff(u,x)*x^4; # now we have a random polynomial of degree < 4}
\begin{align*}
\texttt{3} &\quad 2 \\
\texttt{u} &:= 1265632 \cdot x + 4335155 \cdot x + 3429475 \cdot x + 2575038
\end{align*}
We can check that u is relatively prime to f using Gcd.

> Gcd(f,u) mod p;

1

[Exercise: What is the chance that our u is not relatively prime to f?]
[Question: What if u is not relatively prime to f? Is this bad?]

Assume now that u is relatively prime to f.
Use Powmod to raise u to the power \((p^d-1)/2\).

> uu := Powmod(u,(p^2-1)/2,f,x) mod p;

uu := 10000018

Then we must have uu in \(\{e1,e2,e2,e4\}\).
Let's try to take the gcd of uu - 1 with f:

> Gcd(uu-1,f) mod p;

1

Unlucky! Try again.

> uu := Powmod(u,(p^2-1)/2,f,x) mod p;

uu := 10000018

> Gcd(uu-1,f) mod p;

1

Now we have split f.

> quit

memory used=117.5MB, alloc=32.6MB, time=41.22