
Final Project Revised Proposal: Extended Raytracer
Date: July 11, 2006
Name: Mike Jutan
Userid: mjljutan

ID: 20079294
Section: 002

Professor: Gladimir Baranoski

Contents

1 Proposal 2
1.1 Purpose . 2
1.2 Topics . 2
1.3 Statement . 2
1.4 Goals . 3
1.5 Communication . 4
1.6 Modules . 4
1.7 Technical Outline . 4

1.7.1 Uniform Spatial Subdivisions (Grid Creation, WCS Axis-Aligned Bbox
Transformations and Voxel Traversal) 5

1.7.2 Adaptive Anti-aliasing . 5
1.7.3 Refraction . 5
1.7.4 Phong Model using Vertex Normal Interpolation on Triangles 6
1.7.5 Texture Mapping . 6
1.7.6 Multi-processing and Analysis . 6
1.7.7 Solid Texturing and Procedural Texturing using Noise 7
1.7.8 Area Light Support and Soft Shadows 7
1.7.9 Glossy Reflections . 7
1.7.10 Final Scene . 7

1.8 Milestones . 8
1.9 Bibliography . 8
1.10 Organization . 9
1.11 Documentation . 9
1.12 Sources . 9
1.13 Executables . 9
1.14 Data Files . 9

1

Final Project Proposal: Extended Raytracer

1 Proposal

1.1 Purpose

My passion in Computer Science has been centered on the fusion of Fine Arts and Computer
Science for just about as long as I can remember.

As a Computer Science student at Waterloo, I have enrolled in many Fine Arts and Film
classes to better my understanding of the Fine Arts world and to further develop my artis-
tic skills. At the time of writing this proposal, I am enrolled in an upper-year Fine Arts
independent study course, where I am being taught in a private one-on-one fashion. In this
course, I am learning concepts of colour theory, scene composition, reflection and refraction
and I am also getting a chance to do lots of modeling, texture mapping and other techniques
in Maya.

This explanation I hope provides the reader with a context for my project, and why I have
chosen to extend my Raytracer with some Fine Arts techniques and ideas in mind.

I plan to take some of the Fine Arts skills that I am developing, and apply them to the Final
Scene for my Extended Raytracer Project. The technical requirements for my Raytracer are
based quite closely on my artistic goals for this Project, and thus the technical requirements
were a direct consequence of solidifying my artistic goals.

Pixar’s creative genius John Lasseter is someone who I really look up to, and as he said in
his famous quote: “The art challenges technology and the technology inspires the art.”

I hope to take John Lasseter’s words to heart on this Project and really make some art that
doesn’t just look like it’s been obviously computer-generated. Also, I’d like to figure out
some pretty tough technical details in the extremely limited 2.5 week time frame we have
for this project.

1.2 Topics

• Raytracing speed enhancements.

• Advanced Raytracing and light interaction techniques.

• Using Fine Arts concepts to create a Final Scene.

1.3 Statement

I plan to model some beer glasses (pint glasses) and perhaps other objects in Maya, a 3D
modeling package. I will then export these items as Wavefront .OBJ files, and import them
into my Raytracer. This will require some extensions to the supplied OBJ importer, to allow
for vertex normals and perhaps other .OBJ requirements (such as texture coordinates.)

2

I plan to have a Final Scene with multiple mesh objects on a wooden table, with a picture
frame in the background, and other common household items on the table. I would like to
show what appears to be a random assortment of items on a table, something that is so
commonplace in everyday living, that many people would simply ignore these items com-
pletely. My focus in my Fine Arts courses it to suggest that normal, everyday items can
have a lot of beauty to them, if the small details are observed. For instance, light reflection
and refraction in glasses is very beautiful, and is quite often completely ignored due to it’s
mundane, everyday nature. I hope to convince the observer that these types of light inter-
actions with “everyday” objects have a much deeper level of beauty than most people would
initially expect.

To implement a Raytracer capable of such goals, I will need several specific features. The
obvious one is of course a decent glass simulation, which I will achieve with reflection and
refraction, possibly using the Fresnel method to achieve a more realistic effect. To setup the
indoor table scene, I will need interesting solid (procedural) textures, such as wood grain.
I plan to try several different functions, such as Perlin noise, to get a decent texture simu-
lation. This kind of indoor scene suggests the need for a hanging picture frame, and thus
will require texture mapping. In the hopes of further increasing the believability and effect
of the Final image, I also feel that soft shadows, phong shading and several other graphics
techniques are necessary to achieve my artistic vision.

I believe that this is a very interesting concept and I hope that I have convinced the reader
that my ideas are worthwhile. In terms of the complexity of this Project, I believe that many
of the goals that I have made are computationally expensive, and this implies the need for
some speed-up Algorithms, which I will implement in the form of spatial subdivisions, and
by running my Raytracer as a multi-process computer program.

I hope to learn many new Graphics techniques by implementing this Project, and I hope
to better understand the Physics of light interaction which I believe will follow from my
implementation of reflection and refraction. More importantly, I want to have fun creating
this Raytracer! While the overall learning experience is perhaps the ultimate benefit of this
project, I hope to appreciate the journey I take to achieve this knowledge. I hope that I have
such a great time and learn so much by developing this extended Raytracer, that I want to
continue working on my Raytracer after finishing CS 488.

1.4 Goals

• Raytracer speed enhancements to allow more complex scenes to be rendered.

• Effective glass simulation, using Reflection and Refraction.

• Using Fine Arts techniques to create an artistic Final Scene with good composition
and object placement.

3

1.5 Communication

The basic flow of information is as follows.

Input :
Wavefront .OBJ file(s), describing polygonal mesh objects. A scene description file,
written in LUA, which uses an OBJ importer to extract the necessary data from the
given OBJ file(s).

Interaction :
The Raytracer will not take any user input after the Raytracing process has been
started.

Output :
A rendered image of the specified size, meeting the scene specification as supplied by
the given LUA file.

1.6 Modules

This project will be based on my implementation of Assignment 4, and therefore my code
organization will be similar to A4, where matching *.hpp and *.cpp files will specify and
implement a class.

There will, although, be some changes from the setup in A4 for efficiency and ease-of-
implementation issues.

For instance, instead of passing around the STL containers throughout the A4 render method,
I will likely set these objects as member variables to reduce any unnecessary passing of point-
ers and copying of objects. I am also planning some extensions for triangle-only mesh objects.
Since I am planning to have several mesh objects in my final scene, I will create triangle-
specific intersection code that is separate from the generic polygon-intersection code. This
will allow me to use a faster, more efficient method for ray-triangle intersections, since I will
be doing an astronomical amount of these intersections and I would like this code to be as
efficient and as fast as possible as I can make it in the given time frame.

Command line options will also be added to the Raytracer to allow for the user to specify
certain parameters such as Anti-aliasing amounts, recursion depths etc.

1.7 Technical Outline

While the artistic vision of my Project is well-defined, the method that I am going to use
to achieve a kind of ”realistic” look in my Final Scene in not very well-defined. Therefore,
I had to come up with a list of objectives that I think will be achievable in the given time
frame, and will maximize the effectiveness of my final scene, while still maintaining a level
of programming complexity that is not overboard for the given time frame.

I will now outline the technical aspects of my proposed objective list and discuss some of
the practical issues I will need to consider when implementing these objectives.

4

1.7.1 Uniform Spatial Subdivisions (Grid Creation, WCS Axis-Aligned Bbox
Transformations and Voxel Traversal)

This is perhaps my hardest objective, but will also be the most important. I am planning
to implement this objective first, so that subsequent objectives benefit from the speed en-
hancement from this objective.

I am planning on taking this objective in 3 sub-steps: Grid Creation, WCS Axis-Aligned
Bbox Transformations and Voxel Traversal.

Firstly, I will need to create a 3D grid of uniform-sized cube objects, which will be axis-
aligned and will setup the initial grid structure.

Secondly, I will need to write code to determine which primitives are contained within which
Voxel (or set of Voxels), and an association must be made so that each Spatial Subdivision
Box contains a list of the Primitives that are contained within it. This will be done by adding
bounding boxes to each primitive object, and then converting these bounding boxes from
an AABB (Axis Aligned Bounding Box) in Model Coordinate Space to an OBB (Oriented
Bounding Box) in World Space, and finally to an AABB in World Space. This method will
also be used to calculate the extent of a scene so as to draw a bounding box around the
entire scene’s contents.

Lastly, I must implement a 3D version of the DDA algorithm, as described in the paper
“A Fast Voxel Traversal Algorithm for Ray Tracing” by Amanatides, J., and Woo, A. This
will allow my Rays to take a path through the Spatial Subdivision Boxes, and will greatly
increase the performance and efficiency of my Raytracer.

1.7.2 Adaptive Anti-aliasing

Rather than implementing straightforward Supersampling, I am going to use an Adaptive
method which operates in the following manner:
First, the image will be fully Raytraced with only 1 ray per pixel. Following this, a method
will iterate over these pixels and locate “bad pixels.” Bad pixels are defined to be pixels that
differ from their surrounding (neighbouring) pixels by more than a certain threshold.
After making a set of bad pixels, the Raytracer will then Raytrace these pixels again with
multiple rays. This way I can concentrate the computational power only on the pixels that
“need” Anti-aliasing more than other pixels, and not waste precious computational time by
sending multiple rays through pixels that do not need this.
I will likely make this Anti-aliasing a multi-pass process, and it will continue until there are
no more “bad pixels” or after reaching a specified number of passes.

1.7.3 Refraction

To implement Refraction, I will start with the method specified in class and in the CS 488
course notes. I will send a Transmitted vector through the surface using Snell’s Law as
discussed in class. As an extension to this, if I have time, I would like to combine Reflection
and Refraction together by implementing the Fresnel equations to better simulate a dielectric

5

glass material.

As mentioned in Physically Based Rendering, pp. 419-420, Pharr explains that if we make
the assumption that light is unpolarized, the Fresnel Reflectance equations are simplified to
the average of the squares of the parallel and perpendicular polarization terms.

A close approximation to the Fresnel reflectance formula for Fresnel dielectric materials is:

r‖ = ηt cos θi−ηi cos θt
ηt cos θi+ηi cos θt

r⊥ = ηi cos θi−ηt cos θt
ηi cos θi+ηt cos θt

where r‖ is the Fresnel reflectance for parallel polarized light and r⊥ is the reflectance for
perpendicular polarized light. The Fresnel reflectance for unpolarized light is described in
detail in the Pharr book.

This will require a new command (or a new parameter) added to the material equations to
specify the refraction properties of the surface (including refractive coefficient.)

1.7.4 Phong Model using Vertex Normal Interpolation on Triangles

To create smoother and more effective mesh rendering, I will require the use of vertex normal
interpolation. I will be using Barycentric Coordinates to calculate the interpolated vertex
normal N, and using this as the surface normal for the shading calculations as opposed to
the straight cross-product of the triangle sides which I will use for the naive approach in A4.

This will require some changes to the commands to allow the user to specify a model with
Vertex Normals. I will also need to write or find an extension to the supplied OBJ importing
code that reads Vertex Normals from the given OBJ file and outputs these to the Mesh objects
in my Raytracer.

1.7.5 Texture Mapping

I will be creating a straightforward texture mapping system as described in class and with
help from the Pharr book and other references.

I will be creating normalized UV coordinates for a flat, planar, rectangular surface which
will be a picture frame in my Final Scene. These calculated (u,v) coordinates will be used as
an index into a .png image file, which I will then map directly onto the flat, planar surface.

1.7.6 Multi-processing and Analysis

Another speed-up I am planning is multi-processing. Unfortunately the machines in the lab
are not dual-core, or even multi-processor machines. I did look into the hardware speci-
fications of the glXX machines although, and it does appear than many (or all) of these
machines are Hyper-threaded.

6

I thought that therefore it would be an interesting idea to try a multi-process approach, and
attempt to let the Operating System handle this as a dual (or multi) process, hopefully har-
nessing some of the power of Hyper-treading on the processor chips. While the code for this
will be relatively simple compared to my other objectives, I plan to do a thorough analysis
of the results and create several graphs plotting the Raytracing runtime vs. the number of
created processes.

This will allow me to find (and use) a specific number of processes which maximizes the
computational output per unit time of a specified computer.

1.7.7 Solid Texturing and Procedural Texturing using Noise

Like most people my age, I was really excited when the T-1000 melted up and out of the
checkerboard-textured floor in the film Terminator 2.

As an homage to this amazing historical Special Effects sequence, I thought it would be nec-
essary to implement the Checkerboard texture. As described by Pharr in Physically Based
Rendering, pp. 542-543, Solid Checkerboard is a very simple texture.

Since this alone does not make up much of an objective, I have decided to also implement Pro-
cedural Texturing, using a form of noise function. I plan to use Perlin’s Noise Function, per-
haps using http://mrl.nyu.edu/~perlin/noise, a reference implementation of Perlin’s pa-
per, if it seems appropriate. The following website should also be useful in determining some
functions for wood texture and/or any other procedural textures that I feel are necessary for
my final image: http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

1.7.8 Area Light Support and Soft Shadows

I will need to add support for Area Lights to get a Soft Shadow effect. I will cast multiple
shadow vectors to various points on the light to achieve a percentage of shadow rays that
hit the light, which will determine the relative amount of shadow. If jaggies are created by
this approach, they will be smoothed out by my Anti-aliasing function.

1.7.9 Glossy Reflections

To make more interesting reflections, I will add capability to specify a material as having
“Glossy”, or “Diffuse” Reflection. This means that these surfaces will perturb their standard
reflective ray in a cosine distribution to give a more interesting glossy reflective effect.

1.7.10 Final Scene

Finally, I will convert all the models from Maya to OBJ format, then import them into my
Raytracer using my extended OBJ importer.

Following this, I will apply Fine Arts concepts to arrange the objects and create the scene in
a compositionally well-designed manner. I will use the features created in my Raytracer to
create an image which I hope to be quite realistic, and which will display the features that
I have created.

7

1.8 Milestones

The following approximate order will be taken to achieve my objectives.
I will start with the speed optimizations first, to speed up render times for subsequent ob-
jectives.

• Uniform Spatial Subdivisions (Grid Creation, WCS Axis-Aligned Bbox Transforma-
tions and Voxel Traversal)

• Multi-processing and Analysis

• Adaptive Anti-aliasing

• Refraction

• Glossy Reflections

• Solid Texturing and Procedural Texturing using Noise

• Texture Mapping

• Phong Model using Vertex Normal Interpolation on Triangles

• Area Light Support and Soft Shadows

• Final Scene

1.9 Bibliography

I will likely use the following papers, textbooks and websites in detail, along with several
more that I have yet to locate and read.

Amanatides, J., and Woo, A. “A Fast Voxel Traversal Algorithm for Ray Tracing.” In Pro-
ceedings of Eurographics ’87, G. Marechal, Ed. Elsevier North-Holland, New York, 1987,
3-10.

Department of Computer Graphics, “CS488/688 Course Notes”, Spring 2006.

Donald and Baker, “Computer Graphics with OpenGL, Third Edition”, Prentice Hall, 2003.

Pharr, M., and Humphreys, G. “Physically Based Rendering”, Elsevier/Morgan Kaufmann,
2004.

Perlin, K. “Improving Noise.” In Transactions on Computer Graphics (Proc. of ACM SIG-
GRAPH ’02), 2002.

Perlin, K. “Improved Noise Reference Implementation”, 2002. URL:
http://mrl.nyu.edu/~perlin/noise

8

Williams, A., Barrus, S., Morley, R.K., and Shirley, P. “An Efficient and Robust Ray-Box
Intersection Algorithm.” In Journal of Graphics Tools, Vol. 10, No. 1:55-60, 2005.

1.10 Organization

The files and organization will be similar to the setup of A4, with extra classes as necessary.

1.11 Documentation

The file README will be a brief guide, describing how to run the Raytracer.
The final report will be of a similar form to the following guide and will be created with
Latex and exported to a PDF. This final report will show the algorithms and data structures
used in my Raytracer in a detailed fashion.

1.12 Sources

Source files will be of the following format: src/*.cpp and src/*.hpp.
make will compile the Raytracer.

1.13 Executables

./rt [command-line options]
Command line options will be defined at a later date once I have developed the Raytracer.

1.14 Data Files

The /data/ directory will contain the required LUA and OBJ files.

9

Objectives
Due: Thursday, July 20, 2006.

Name:

User ID:

Student ID:

A4 Extra Objective: Reflection

1: Uniform Spatial Subdivisions (Grid Creation, WCS Axis-Aligned Bbox
Transformations and Voxel Traversal): The Raytracer will use Uniform Spa-
tial Subdivisions as a method to increase efficiency. This requires 3D grid creation,
bounding box code for for all implemented primitives and Voxel Traversal using a 3D
version of DDA.

2: Multi-processing and Analysis: The Raytracer will run a number of processes,
greater or equal to 1, which maximizes computational speed. This number will be
determined by a set of Raytracing experiments, and will be documented in the analysis.

3: Adaptive Anti-aliasing: Anti-aliasing is carried out on the scene to remove jaggies.

4: Refraction: Snell’s law is used to compute the angle of transmission and secondary
rays are cast on intersection with translucent objects to produce refraction effects.

5: Glossy Reflections: Objects may have a glossy reflection material applied.

6: Solid Texturing and Procedural Texturing using Noise: Textures can be applied
to primitives, including checkerboard and procedurals using Perlin noise.

7: Texture Mapping: Texture mapping has been implemented.

8: Phong Model using Vertex Normal Interpolation on Triangles: Vertex Normal
Interpolation is used to create smoother surfaces.

9: Area Light Support and Soft Shadows: Planar light sources are implemented and
extra shadow rays are used to produce soft shadow effects.

10: Final Scene: A final, unique scene is created with techniques from Fine Arts. This
scene will demonstrate the features of my Raytracer.

Declaration:

I have read the statements regarding cheating in the CS488/688 course handouts. I
affirm with my signature that I have worked out my own solution to this assignment,
and the code I am handing in is my own.

Signature:

10

