CS764 — Computational Complexity — Spring 2014
Revised version: changes in italics

Basic problems (required): submit solutions by Monday, June 2.
Advanced problems (optional): submit solutions by the end of lectures.

Basic problems

These problem can be solved using the results and techniques discussed in class, and some bits of
basic mathematics.

1. Let FVAL be the language of Boolean expressions that evaluate to 1. Here an expression has
only constants (0 and 1), connectives (A, V and —) and parentheses.

Show that FVAL € SPACE (logn).
2. For each integer k > 2, show that there are circuits to compute parity that

e use only AND and OR gates (with arbitary in-degree),
e have negated inputs available (e.g., —x; is an available input bit, for each i),

e have depth k, and

1/(k=1)y

e have size 20" for inputs of length n.

For example, the case k = 2 asks to represent parity in either either sum-of-products or
product-of-sums form, using 20(") minterms or maxterms.

(The parity problem: output 1 iff the number of 1s in the input is even.)

3. Fix a function f that satisfies f(n+1) > f(n) > n for every n. Assume that the value of f(n)
can be computed from n in time proportional to f(n), or less.
For every string z, let expandf(x) denote the string 2017 (=D=l21=1. that is, = ezpanded to
length f(|z]) by the necessary number of 1s (with a separator).

For a language A, let expand ;(A) denote the set
expand ;(A) = { expand;(z) [z € A} .

(a) Suppose that erpand(A) € TIME(t(n)). Show that A € TIME(t(f(n))).
Note: the original version of the problem asked for A € TIME(f(t(n))). The current
A€ TIME(t(f(n))) is correct.

(b) Show that if TIME(n) = NTIME(n) then TIME(f(n)) = NTIME(f(n)).
(One can prove that TIME(n) # NTIME(n)—that, is, the hypothesis fails—but that is
definitely the hard way to solve this problem. Using the notion of expansion makes it
much easier.)
(Note: the revision to the definition of “expand;” does not affect the problem in a sig-
nificant way—it just makes some of the notation simpler in a solution. Use the original
formulation if you wish.)



Advanced problems

These problems require techniques not discussed in class, and/or some inventiveness—but solutions
lie within reach.

4. Give an algorithm for a Turing machine whose space usage is O(loglogn), but not constant.
The language computed doesn’t matter; just focus on the space used.

(Hints: (a) By the next problem, the solution must use its input tape heavily. (b) The actual
space used need not be the same for every input of length n; it may even be constant for
some of them—but not all.)

5. (a) Suppose that a language A can be accepted in space o(logn) by a Turing machine M
that never moves its input head to the left. Show that M must use only constant space
(which implies that A is regular).

(b) Let s(n) = o(loglogn). Show that SPACE(s(n)) is the set of regular languages.
6. Write an algorithm that has the following properties.

e When the input is a satisfiable Boolean formula, the algorithm produces a satisfying
assignment. Otherwise, it rejects.

e If P = NP, the algorithm runs in polynomial time on satisfiable formulas (but may use
exponential time on unsatisfiable formulas).

Hint: If P = NP, then some algorithm exists, but you must do more: show that, if P = NP,
then your particular algorithm has a polynomially bounded run time on satisfiable formulas.

7. Let B be accepted by a one-tape Turing machine in time ¢. Show that B € SPACE(\/t).

(Hint: Divide the tape of the one-tape machine into blocks of size /¢, and simulate each
block as independently as possible.)



