
CS 842: Advanced Topics in
Programming Language
Design and Implementation
PROF STEPHEN M. WATT

Course Objectives
• Learn about programming language concepts that appear

in both tried-and-true and new-and-hot languages.

• Develop a clear understanding of how programming languages are
implemented and how key features work.

• To understand the issues and tradeoffs that are made in designing new
programming languages, such as Rust and Typescript, or in extending
popular languages such as Python and C++.

• You will be learning from the Prof and from each other in a seminar setting.

Professor Intro
Name: Stephen Watt

Background:

• IBM Research (Yorktown Heights) 12 years

• Prof at University of Nice (France), UWO, Waterloo (past Dean of Math)

• 2.5 compilers, several interpreters

• One of original authors of Maple
◦ Interpreted language for symbolic computation

• Primary architect of Aldor
◦ Compiled language with dependent types

• Research in
◦ symbolic computation

◦ programming languages and their implementation

◦ machine learning for handwriting recognition.

Basic Course Facts
Prof: Stephen Watt

When: Thursdays 1pm to 4pm

Where: DC 2568

Text: None. Readings from the literature.

Exams: None

Assigned work:
• A study of a topic from the current literature.

Each student will make a 25 minute presentation of 1 (or more) articles.

• A software project.
Students will study or implement a language feature.

Evaluation:
• Presentation 40%

• Project 40%

• Participation 20%

Course Schedule
Thursdays 1pm to 4pm, DC 2528

• Sept 8: Prof intro. Basic course facts. Topics overview.

• Sept 15: Student intros asynchronous – no class Intro video due Sept 16.

• Sept 22: Lecture/Seminar online

• Sept 29: Lecture/Seminar Article selection due.

• Oct 6: Lecture/Seminar Programming project proposal due.

• Oct 13: Break – No Class

• Oct 20-Dec 1: Lectures/Seminars and Student Presentations

• Dec 6: Programming projects due.

Study of Topic from the Literature
• Select article or topic from literature

(see list of representative conferences and journals below).

• The third hour of the first lectures will be devoted to discussions
to help with topics, relevant literature and selection.

• Get approval by E-mail:
◦ Look at several articles from the sources given or similar, and pick EITHER

▪ A ranked selection (1st choice, 2nd choice, 3rd choice) of articles that interest you OR

▪ A topic on which there are several articles for which you would like to present an overview

◦ Give bibliographic references (where appeared, date)

◦ Attach a copy of the articles

◦ Write a paragraph (100-200 words) about why you find the articles or topic interesting

◦ Put as subject line: CS 842 Article Study Proposal

◦ Send to Prof smwatt@uwaterloo.ca for approval by Sept 29.

◦ In the case of the ranked selection, I will pick the best one for you.

• Prepare class presentation:
25 minutes (15-25 slides). A 15 minute discussion will follow.

mailto:smwatt@uwaterloo.ca

Representative Conferences and Journals
• Programming Language Design and Implementation (PLDI) https://pldi22.sigplan.org

• Principles of Programming Languages (POPL) https://popl22.sigplan.org

• International Conference on Functional Programming (ICFP) https://icfp22.sigplan.org

• Systems, Programming, Languages and Applications (SPLASH) https://2021.splashcon.org

• International Symposium on Memory Management (ISMM)
https://conf.researchr.org/home/ismm-2021

• Compiler Construction (CC) https://conf.researchr.org/home/CC-2022

• Principles and Practice of Parallel Programming (PPoPP) https://ppopp22.sigplan.org

• Architectural Support for Programming Languages and Operating Systems (ASPLOS)
https://asplos-conference.org

• Partial Evaluation and Program Manipulation (PEPM)
https://popl22.sigplan.org/home/pepm-2022

• European Conference on Object-Oriented Programming (ECOOP) https://2022.ecoop.org/

• Types in Language Design and Implementation (TLDI) https://dl.acm.org/conference/tldi (older)

• ACM Transactions on Programming Languages and Systems

• Journal of Functional Programming

https://pldi22.sigplan.org/
https://popl22.sigplan.org/
https://icfp22.sigplan.org/
https://2021.splashcon.org/
https://conf.researchr.org/home/ismm-2021
https://conf.researchr.org/home/CC-2022
https://ppopp22.sigplan.org/
https://asplos-conference.org/
https://popl22.sigplan.org/home/pepm-2022
https://2022.ecoop.org/
https://dl.acm.org/conference/tldi

Example
Article Study
Proposal

Programming Project
• A significant project of your own devising, e.g.:

◦ Implement a mini interpreter to illustrate a language feature.

◦ Extend an open source language processor with a feature.

◦ Do a comparative analysis and benchmarking of a specific feature in different languages.

◦ Analyze a code base to determine which language features are really used.

◦ Write a program transformation tool for a specific purpose.

◦ If you don’t have a specific project, the professor can make suggestions.

• An average student should budget about 1 day of work per week for up to 2 months.

• Get approval by E-mail:
◦ Write a 1 or 2 page project proposal with

▪ General overview and objectives

▪ Approach you will take (roughly what platform, what tools, what test cases, …)

▪ 8-12 milestones with a description of what each will involve.

◦ Send to Prof smwatt@uwaterloo.ca for approval by October 6.

▪ Use subject line: CS 842 Programming Project Proposal

• Submit project.
◦ Due December 6.

◦ Submit tar file with documentation, sources, building scripts, tests and demo.

◦ Provide a 5 minute video with a demonstration (post to YouTube or other streaming service).

◦ Send tar file and video link to Prof using subject line: CS 842 Programming Project Submission

mailto:smwatt@uwaterloo.ca

Sample
Programming
Project
Proposal

A Brief Overview of Topics
Topics will be selected from:

• Memory management / garbage collection.

• Functional programming and closures.

• Lazy evaluation and parallel futures.

• Programming language issues around arithmetic types.

• Polymorphic language techniques.

• Types as first-class values, type categories, dependent types.

• Method dispatch and optimization in object-oriented languages.

• Topics in code optimization, including dataflow analysis.

• Iterators, generators, co-routines and their optimization.

• Potentially others, by request.

Memory Management / Garbage Collection

• Heaps

• Reference counting

• Garbage collection basics: root sets, heap

• Mark and sweep

• Copying collectors

• Generational collectors

• Distributed collectors

• Implementation techniques: forwarding pointers, write barriers, …

Functional Programming and Closures
• Basic functional programming ideas

• Lexical bindings

• Environments and escaping functions

• Relationship between OO methods and closures

• Spaghetti stacks

• Closures vs continuations

Lazy Evaluation and Parallel Futures
• Strict vs normal order evaluation

• Implementation of delayed expressions

• Strictness analysis in lazy languages

• An extended example: infinite lists

• Fixed-point methods

• Futures

PL Issues around Arithmetic Types
• Numeric hierarchies

• Hardware representation of numbers

• Immediate versus boxed numbers

• Misaligned pointers as integers

• NAN-boxing

Polymorphic Language Techniques
• Tagged values

• Objects

• Parametric polymorphism
◦ Compile-time analysis

◦ Type erasure and homogeneous implementation

◦ Compile-time specialization

◦ Run-time parametric polymorphism

• Dependent types

Types as First-Class Values
• What is a type?

• Compile-time vs run-time types.

• Types of types, type categories, C++ “concepts”

• First class dependent types vs “templates”

• Type producing functions vs “template templates”

Method Dispatch and Optimization
• Representation of objects

• Static, virtual and final methods

• Separate compilation, indirection and inlining

Topics in Code Optimization
• Binding times

• Dataflow analysis

• Constant propagation

• Common subexpression elimination

• Value numbering

• Code specialization

• How inlining affects the above

Iterators, Generators and Co-Routines
• Traversing data structures

• Loops as syntactic sugar for maps

• Iterator state

• Generators and streams

• Parallel iterators

• Iterators as co-routines

• Optimization

Upcoming Classes
• September 15:

◦ Asynchronous – offline. Independent work. No class.

◦ Scan through some of the representative conferences and journals by looking them up by name
on the UWaterloo Library web site.

◦ Prepare 5 minute video describing your background and interests/what you hope to get from the
course. Intro video due Sept 16.

◦ Post to YouTube or other streaming service and send link by E-mail to instructor.

◦ Use subject line: CS 842 Self Intro

• September 22:
◦ Synchronous – online.

◦ Professor will be away at a research conference, but will send link for an on-line session by Teams.

