
C++ Tutorial
Java 1.5 Based

University of Waterloo

Version 1.0

Peter A. Buhrc�2005

last update: December 4, 2007

Good code has good design elements;
good code also uses the dominant metaphors in a language

to make it easy for other programmers to understand.�Permission is granted to make copies for personal or educational use.

2 C++ Tutorial

Contents

1 Introduction 4

2 Brief History of C/C++ 4

3 C/C++ Source File 4

4 Compilation 4

5 Execution 5

6 Program Structure 5
6.1 Comment . 5
6.2 Statement. 6

7 First Program 6

8 Declaration 7
8.1 Identifier. 7
8.2 Basic Types. 7
8.3 Variable Declaration . 7
8.4 Type Qualifier. 8
8.5 Constants. 9
8.6 Type Constructor. 9

8.6.1 Enumeration. 10
8.6.2 Pointer/Reference. 10
8.6.3 Aggregation (structure/array). 13
8.6.4 Type Aliasing. 14

8.7 Type-Constructor Constant. 14

9 Expression 15
9.1 Conversion . 17

10 Control Structure 18
10.1 Block .18
10.2 Conditional . 18
10.3 Selection . 18
10.4 Conditional Expression Evaluation. 19
10.5 Looping . 20

11 Preprocessor 21
11.1 Substitution. 21
11.2 File Inclusion . 22
11.3 Conditional Inclusion. 23

12 Input/Output 23
12.1 Input. .. 24
12.2 Output. .25

13 Dynamic Storage Management 26

14 Routine 29
14.1 Argument/Parameter Passing. 30
14.2 Array Parameter. 31

C++ Tutorial 3

15 String 31

16 Shell Argument 33

17 Object 34
17.1 Operator Members. 36
17.2 Nesting . 37
17.3 Constructor. 37

17.3.1 Constant . 38
17.3.2 Conversion. 39
17.3.3 Copy . 39
17.3.4 const Member. 40

17.4 Destructor. 40

18 Forward Declaration 41

19 Overloading 44

20 Inheritance 46
20.1 Implementation Inheritance. 46
20.2 Type Inheritance . 47
20.3 Virtual Routine . 49
20.4 Down Cast. 50
20.5 Constructor/Destructor. 50
20.6 Abstract Interface. 51

21 Template 51

22 Namespace 55

23 Encapsulation 55

24 Separate Compilation 56

25 Acknowledgments 60

A Pulling It All Together 60

Index 62

4 C++ Tutorial

1 Introduction
This tutorial is designed to give a working knowledge of C++ (and indirectly parts of C) as quickly as possible for
people with Java programming experience and familiarity with basic programming language concepts. By working
through the exercises, core C++ concepts can be learned and practiced. This tutorial is not a substitute for a good C++
textbook; in several places, you are referred to a textbook for more complete information. This tutorial also assumes
familiarity with the UNIX operating system and a text editor. (Any corrections or suggestions about this tutorial can
be sent topabuhr@uwaterloo.ca.)

Throughout the tutorial, the following symbols are used:) This symbol indicates that you are to perform the action marked by the arrow../ This symbol indicates that the section explains a concept that may be unfamiliar even if you have some previous
programming experience. Make sure you understand this concept before advancing in the tutorial.

NOTE: A particular programming style is used in this tutorial. However, each course may have its own program-
ming style; always follow that particular style.

2 Brief History of C/C++
C was designed for and implemented on the UNIX operating system of a DEC PDP-11 by Dennis Ritchie, starting in
1970. The intent was to create a language more powerful than assembly language but still allow direct access to the
machine. C is often used to write system software, such as UNIX.

C++ was designed by Bjarne Stroustrup, starting in 1980, to add object-oriented capabilities, along with other
important extensions to C. C++ ismostlya superset of C. While C++ made important improvements, it did not fix
existing problems with C to maintain backwards compatibility. Therefore, C++ has both its problems and C’s problems.

3 C/C++ Source File
A C++ source file should be created in a UNIX file with the suffix.cc, .cxx, .cpp, .cp, .c++ or .C. (Suffix .C is used in
this document.) A C source file should be created with suffix.c. Any text editor may be used to create a source file.
Many text editors use a file’s suffix to infer the kind of data within the file. Then the editor provides language-specific
operations, such as colourization, indentation, searching, etc. As well, the C++ compiler uses the file suffix to decide
which files are used for specific compilation steps.

4 Compilation
The C++ compilation command performs the following steps: preprocessing, compilation, assembly and linkage to
produce an executable file calleda.out. (The filea.out is overwritten for each compilation.) By using appropriate
command-line options, individual steps of the compilationand actions within a step can be controlled. This tutorial
uses the GNUg++ compiler; anyg++ specific material is always identified. The general form of a C++ compilation
command is:

g++ -option -option . . . source-file1.C source-file2.C . . .

There is often only one source file.
An option starts with a “-” (minus character) followed by a single-character name andpossibly a value depending

on the option. In most cases, the option value can immediately follow the option name or be separated from it by
spaces. In general, no options are required; some useful options are (seeman g++ for a complete list of options):

-E Perform only the preprocessor step, printing the output on standard output (see Section11, p. 21).

-c Perform only the preprocessor and compilation steps (see Section24, p.56).

-o name Name the executable file to the specified name instead ofa.out, e.g.,g++ -o assn1 yourprogram.C creates
an executable calledassn1 instead ofa.out.

-O Optimize the code generated by the compiler so the program runs faster.

-Wall Printall useful compilation warning messages. (g++ only)

-g Produce additional symbol-table information for a symbolic debugger (dbx or gdb).

C++ Tutorial 5

5 Execution

Once an executable file is created from a C++ source program, it is presented to a shell to be loaded and run, like
built-in commands (e.g.,ls, emacs, rm). Unless the directory where the executable resides is in the shell’s search path,
the shell cannot find the executable file. It then becomes necessary to specify the location of the executable using an
absolute or relative directory path. The full (absolute) directory path can be specified, but if the executable is located
in the current directory, its location can be specified usinga relative path, such as “. / ”. For example, if working in
directory/u/userid/work, the executablea.out can be run by specifying either/u/userid/work/a.out or . /a.out on the shell
command line.

Like built-in commands, a C/C++ executable may have command-line options; accessing these shell arguments is
discussed in Section16, p. 33.

6 Program Structure

A C++ program is composed of two components: comments strictly for people, and statements for both people and
the preprocessor/compiler. A source file contains a mixtureof comments and statements. The C/C++ preproces-
sor/compiler only reads the statements and ignores the comments.

6.1 Comment

Comments are essential to document what a program does and how it does it. Like Java, a comment may be placed
anywhere a whitespace (space, tab, newline) is allowed, andthere are two kinds of comments in C/C++, which are
identical to those in Java:

Java/C/C++

1 /* . . . */
2 // remainder of line

The first form begins with the start symbol,/*, and ends with the terminator symbol,*/, and hence, can extend over
multiple lines. Like Java,this form cannot be nested one within another:

/* . . . /* . . . */ . . . */

Here, the first terminator,*/, ends the comment and the remaining comment text is treated as statements. Hence, be
extremely careful in using this form of comment to elide/comment-out code:

/* attempt to comment-out a number of statements
while (. . .) {

/* . . . nested comment causes errors */
if (. . .) {

/* . . . nested comment causes errors */
}

}

*/

The second form begins with the start symbol,//, and continues to the end of the line, i.e., only one line long. Like
Java, this form of comment can be nested one within another:

// . . . // . . . nested comment

so it can be used to comment-out code:
// while (. . .) {
// /* . . . nested comment does not cause errors */
// if (. . .) {
// // . . . nested comment does not cause errors
// }
// }

Section11.3, p. 23presents another way to comment-out code.
When asked to enter or modify a program in this document, it isunnecessary to enter comments in the

program; these comments provide additional explanation and never affect the program’s execution. In fact, all
the code for each work assignment (labelledExN) is available online; ask for the specific location.

6 C++ Tutorial

6.2 Statement

C++ is actually composed of 3 languages:

1. The preprocessor language modifies (text-edits) the programbeforecompilation (see Section11, p.21).
2. The template (generic) language adds new types and routinesduringcompilation (see Section21, p. 51).
3. The programming language specifies declarations and control flow to be executedafter compilation.

A programmer uses the three programming languages in the following way:

user edits! preprocessor edits! templates expand! compilation (! linking/loading! execution)

The syntax for a preprocessor statement is a# character, followed by a series of tokens separated by whitespace,
which is usually a single line and not terminated by punctuation. The syntax for a C/C++ statement (both template and
regular) is a series of tokens separated by whitespace and terminated by a semicolon.1

7 First Program
The standard first C++ program prints “Hello World!” to the screen.) Edit a file calledhello.C) Enter the C++ program (including comments):

Java C++

import java.lang.*; // implicit
class hello {

public static void main(String[] args) {
System.out.println("Hello World!");
System.exit(0);

}
}

// First C++ program by: YourFirstName YourLastName
// Print “Hello World!” to the screen.
#include <iostream> // import I/O facilities
using namespace std; // direct naming of I/O facilities
int main() { // program starts here

cout << "Hello World!" << endl;
return 0; // return 0 to shell

}

Several important points are illustrated in this program:

1. When writing programs, there should be comments at the beginning identifying the programmer and what the
program does. Additional comments should appear within thesource code to explain how the program works.
Different courses have different documentation guidelines; it is your responsibility to follow those guidelines.

2. The#include <iostream> imports the basic input and output (I/O) facilities for C++,which facilitates reading
and writing of values (no equivalent in Java).

3. Theusing namespace std allows imported I/O names to be accessed directly, i.e.,withoutqualification, like
Javaimport java.lang.*.

4. The routine headerint main() is the default location to begin execution when an executable file is called from a
shell. There is only onemain routine per program and it returns an integer code to its invoking shell.

5. Like Java, the curly braces,{ . . . }, denote the start and end of a block of code, and this block is the body of
routinemain.

6. The statementcout << "Hello World!" << endl prints the text"Hello World!" to standard output, called
cout, which is usually the terminal screen (likeSystem.out in Java). Think of the information as cascading from
right to left, as indicated by the chevron,<<, to be printed oncout. endl ensures the string"Hello World!"

appears on its own line, likeprintln in Java.

7. Thereturn 0 returns zero to the shell indicating successful completionof the program; non-zero usually indi-
cates an error. In many C/C++ programs, routinemain does not return a value; in this case, an implicit value of 0
is returned. Only routinemain has this special property. The routineexit, like JavaSystem.exit, can also be used
to stop a program at any location and return a code to the invoking shell, e.g.,exit(0).

1 The exception is a block, denoted with{ }, which forms a complete statement so it is not terminated with a semicolon (see Section10.1, p.18).

C++ Tutorial 7) Compile the first program with the command:g++ hello.C) If the compilation produces error messages, read the messages and make appropriate changes to the code.) Once the program compiles properly, run it by issuing the command./a.out in the shell.) Edit file hello.C.) Remove “<< endl” from the output statement (but not the semicolon).) Compile and run the program again.

Notice the difference in output between the two programs.

8 Declaration
A declaration defines new variables and types in a program. Variables and types may be named or be anonymous.

8.1 Identifier

An identifier is a name used to refer to a variable or type. LikeJava, identifiers in C/C++ may be arbitrarily long, and
the first character must be a letter (upper or lower case) or anunderscore “_”; characters other than the first can be any
of the previous, or a digit. An identifier iscase-sensitive; i.e., an identifier written in upper-case is not the same as one
in lower case or in mixed case (both upper and lower case). Examples of valid identifiers are:

VeryLongVariableName Page1 Income_Tax _75

Some identifiers are reserved as they denote keywords (and appear inbold font in this document); see a C++ text-
book for a complete list of reserved identifiers. (Identifiers beginning with an underscore are reserved for the C++
implementation.)

8.2 Basic Types

The basic types in C/C++ are like those in Java:

Java C/C++
boolean bool a

char char /wchar_t
byte char /wchar_t integral types
int int
float float floating-point types
double double

aC requires<stdbool.h>

Unlike Java, C/C++ treatchar andwchar_t (for unicode characters) as an integral type for computation. Java types
short andlong are created using type qualifiers (see Section8.4).

8.3 Variable Declaration

A simple variable declaration in C/C++ is the same as in Java:a type followed by a list of identifiers.

Java/C/C++

char a, b, c, d;
int i, j, k;
double x, y, z;

Declarations in C/C++ can be global to a source file (unlike Java), and local to a block forming a routine body or any of
its containing (nested) blocks. Declarations can be intermixed among executable statements within a block; variable
names can be reused in nested blocks, i.e., hide (override) names in a containing block. All global variables of the
basic types are zero-initialized, while similar local variables in a block arenot initialized. Unlike Java, C/C++ do not
check for uninitialized variables.2 A C/C++ declaration may have an initializing assignment (except for astruct /class
member, see Section8.6.3, p. 13):

int i = 3;) Edit file hello.C.

2Using the-Wall and-O compilation flags (see Section4, p.4) does check for uninitialized variables ing++, which are not optimized away.

8 C++ Tutorial) Enter the following program:
#include <iostream> // Ex01
using namespace std;
bool x; // global declaration in a source file
int main () {

short y; // local (automatic) declaration in block
cout << "x:" << x << endl; // use of global variable
cout << "y:" << y << endl; // use of local variable
int z; // local declaration anywhere in block
cout << "z:" << z << endl; // use of local variable
{

long y; // nested local redeclaration, hide previous y
cout << "y:" << y << endl; // use of local variable
double z; // nested local redeclaration, hide previous z
cout << "z:" << z << endl; // use of local variable

}
}) Compile with compilation flags-Wall -O and run the program.

Since variablesy andz are uninitialized, the values printed may not be zero and could vary each time the program is
run. Why is variablex initialized?

8.4 ./ Type Qualifier

C/C++ provide only two basic integral typeschar andint ; other integral types, like Javashort andlong , are generated
using type qualifiers. Like Java, C/C++ provide signed (positive/negative) integral types; unlike Java, C/C++ also
provide unsigned (positive only) integral types.

integral types range

signed char or char at least-127 to 127
unsigned char at least0 to 255
signed short int or short at least-32767 to 32767
unsigned short int or unsigned short at least0 to 65535
signed int or int at least-32767 to 32767
unsigned int at least0 to 65535
signed long int or long at least-2147483647 to 2147483647
unsigned long int or unsigned long at least0 to 4294967295
signed long long int or long long , g++ only at least-9223372036854775807 to 9223372036854775807
unsigned long long int or unsigned long long , g++ at least0 to 18446744073709551615

Unlike Java, the range of values forint is machine specific; usually 2 bytes for 16-bit computers and4 bytes for
32/64-bit computers. Similarly,long is usually 4 bytes for 16-bit computers and 8 bytes for 32/64-bit computers.

Like Java, C/C++ support constant variables that are write-once/read-only. Java uses type qualifierfinal , while
C/C++ use type qualifierconst , applicable in any variable declaration context. Unlike Java, a C/C++const identifier
mustbe assigned a value on its declaration (or through a constructor’s declaration); the value can be the result of a
runtime expression:

Java C/C++

final short x = 3, y; const short int x = 3, y = x + 7;
y = x + 7; disallowed
final char c = ’x’; const char c = ’x’;

A constant variable can appear in read-only contexts after it is initialized.) Edit file hello.C) Enter the following program:

C++ Tutorial 9

#include <iostream> // Ex02
using namespace std;
int main () {

long int x;
x = 10000000000;
unsigned short int y = -1;
const int z = y + 3;
z = 4;

}) Compile the program.) Read the messages from the compiler and do not proceed until you understand why each is generated.

8.5 Constants

Java and C/C++ share almost all the same constants for the basic types (except for unsigned). Adesignatedconstant
indicates its type with suffixesL/l for long,LL/ll for long long,U/u for unsigned, andF/f for float. Unlike Java, there is
no D/d suffix for double constants. Anundesignatedintegral constant (octal/decimal/hexadecimal) is the smallest int
type that holds the value, and a floating-point constant is oftypedouble .

boolean false , true
decimal 123, -456L, 789u, 21UL

octal, prefix0 0144, -045l, 0223U, 067ULL
hexadecimal, prefix0X or 0x 0xfe, -0X1fL, 0x11eU, 0xffUL

floating-point .1, 1., -1., -7.3E3, -6.6e-2F useE/e for exponent
character, single character’a’, ’\’’

string, multi-character "abc", "\"\""

Care must be taken to use the right kind of constant with the right kind of character or string variable. Like Java,
an escape sequence for special characters can appear any number of times in a string constant. An escape sequence
starts with a backslash,\. The most common escape sequences are (see a C++ textbook forothers):

’\\’ backslash
’\’’, "\"" single and double quote
’\t’, ’\n’ tab, newline
’\0’ zero, string termination character
’\ooo’ octal character value, whereooo is up to 3 octal digits
’\xhh’ hexadecimal character value, wherehh is up to 2 hexadecimal digits (not in Java)

Unlike Java, a C/C++ string constant is implicitly terminated with a character containing the value 0. For example,
the string"abc" is actually 4 characters composed of’a’, ’b’, ’c’, ’\0’. (The reason is given in Section15, p. 31.)) Edit file hello.C) Make the following modification to routinemain:

int main () { // Ex03
cout << 12 << endl << 014 << endl << 0xc << endl;
cout << 1234.5 << endl << 1.2345e3 << endl;
cout << ’w’ << ’\\’ << ’\’’ << ’"’ << ’\n’ << endl;
cout << "w\\’\"\n" << endl;

}) Compile and run the program.) Check the output carefully.

Some of the printed values are different from the constants in the output statements. Section12.2, p. 25explains how
to precisely control the format of printed values.

8.6 Type Constructor

A type constructor is a declaration that builds a more complex type from the basic types.

10 C++ Tutorial

constructor Java C/C++

enumeration enum Colour { R, G, B } enum Colour { R, G, B }
pointer any-type *p;

reference class-type r; any-type &r; (C++ only)
structure class struct or class

array int v[] = new int [10]; int v[10];
int m[][] = new int [10][10]; int m[10][10];

type aliasing typedef char name[25];
name first, last;

Like Java, C/C++ usename equivalenceto decide if two types are the same:
class T1 { class T2 { // identical structure

int i, j, k; int i, j, k;
double x, y, z; double x, y, z;

} }
T1 t1 = new T1();
T2 t2 = t1; // incompatible types

Here the typesT1 andT2 have identical structure (same fields in the same places) buthave different names so the
initialization of variablet2 fails, even though technically it could work. Analias is a different name for the same type,
so alias types are equivalent.

8.6.1 Enumeration

An enumerationis a type defining a set of named constants with only comparison, assignment and cast to integer
operations:

enum Names { John, Mary, Fred, Jane }; // declare type and its constants
Names name = Mary; // only assignment operation

The Java enumeration capabilities are more sophisticated than in C/C++. A C/C++ enumeration can only give names to
integral values, whereas a Java enumeration can give names (and operations) to any value. Like Java, an enumeration
in C++ denotes a new type; in C an enumeration is an alias forint . The names in an enumeration are calledenumerators.
In Java, the enumerator names are contained in the scope of the enumeration and must always be qualified. In C/C++,
the enumerator names are contained in the scope where the enumeration is declared and are not qualified; hence,
enumerator names must be unique in a declaration scope. LikeJava, the enumerators can be numbered explicitly.) Edit file hello.C) Make the following modification to routinemain:

int main() { // Ex04
enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering
Day day = Sat; // variable declaration, initialization
enum {Yes, No} vote = Yes; // anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type and variable declaration, explicit numbering
colour = B; // assignment
cout << "day:" << day << " vote:" << vote << " colour:" << colour << endl;

}) Compile the program, run it, check the output, and make sure you understand it.

In C, the keywordenum must always be specified when declaring an enumeration variable:
enum Day day = Sat; // repeat “enum” on variable declaration

8.6.2 Pointer/Reference

A pointer/referenceis an indirect (versus direct) mechanism to access a type instance. To understand pointers/references
it is necessary to know thatall variables have an address in memory, e.g.,int x = 5, y = 7:

x 5 7

100 200

int int

address

variable/value

type

y

C++ Tutorial 11

The value of a pointer/reference is simply the address of a variable; access to this address is different depending on
whether it is a pointer or reference.

There are two basic pointer/reference operations:

1. referencing: obtain the address of a variable; unary operator& in C++:
&x ! 100
&y ! 200

2. dereferencing: retrieve the value at an address; unary operator* in C++:

*(&x) ! *(100) ! 5

*(&y) ! *(200) ! 7

In addition, there is a special address no variable can have called thenull pointer(null in Java, 0 in C++).
A pointer/reference variable has as its value either the memory address of another variable (calledindirection) or

the null pointer (or an undefined address if the pointer variable is uninitialized):

null pointer0p3

70

y

200

7

60

200p2

intpointer to int

100

5 x

50

100p1
&p1 ! 50
&p2 ! 60
&p3 ! 70

*(&p1) ! 100

*(&p2) ! 200

*(&p3) ! 0

((&p1)) ! 5

((&p2)) ! 7

((&p3)) ! error

A pointer/reference may point to the same memory address as another pointer/reference (dashed line). Also, derefer-
encing the null pointer is an error because no variable is allocated at address 0.

Explicit dereference is an operation usually associated with a pointer:

*p2 = *p1; � y = x; // value assignment

*p1 = *p2 * 3; � x = y * 3;

In the first expression, the value pointed to byp2 is assigned the value pointed to byp1, which is an indirect way
to performy = x. In the second expression, the value pointed to byp1 is assigned the value pointed to byp2 times
3, which is an indirect way to performx = y * 3. Note, the unary and binary use of operator* for deference and
multiplication, respectively. Address assignment does not require dereferencing:

p2 = p1; // address assignment

Here,p2 is assigned the same memory address asp1, i.e.,p2 points atx; the values ofx andy do not change.
When pointers are used frequently, having to perform explicit dereferencing can be tedious and error prone. For

example, in:
p1 = p2 * 3; // implicit deference

it is unreasonableto interpret this expression asp1 is assigned the address inp2 times 3, because there is no multipli-
cation operation for address values and there may not be a valid integer variable at memory location600. Instead, it
is reasonable to interpret this expression as the value pointed to byp1 is assigned the value pointed to byp2 times 3,
as both pointers refer to integer variables and there is a multiplication operation for integers. A pointer that provides
implicit dereferencing is areference. However, implicit dereferencing generates an ambiguous situation for:

p2 = p1;

Should this expression perform address or value assignment, and how are both cases specified? Disambiguating this
expression is discussed next.

C provides only a pointer; C++ provides a pointer and a restricted reference; Java provides only a general reference.

1. C/C++ pointer: created using the* type-constructor, may point to any type (i.e., basic or object type) in any
storage location (i.e., global, stack or heap storage), andno implicit referencing or dereferencing.) Edit file hello.C) Make the following modification to routinemain:

12 C++ Tutorial

int main() { // Ex05
int x = 5, y = 7; // basic type
int *p1, *p2; // pointer to basic type
p1 = &x; // point to x, explicit referencing
p2 = &y; // point to y, explicit referencing
p1 = p2; // address assignment

*p2 = *p1; // value assignment, explicit dereferencing

*p1 = *p2 * 3; // explicit dereferencing
cout << "p1:" << p1 << " *p1:" << *p1 << endl;
cout << "p2:" << p2 << " *p2:" << *p2 << endl;

}) Compile the program, run it, check the output, and make sure you understand it.

Type qualifiers (see Section8.4, p.8) can be used to modify pointer types:

const short int w = 25;
const short int *p3 = &w;

int * const p4 = &x;
(int &p4 = x;)

const long int z = 37;
const long int * const p5 = &z; 308 37p5 z

5100p4 x

25 w300p3

Pointerp3 may point at anyconst short int variable. In this case, the pointer can change to point at different
variables, but the value of the variables cannot be changed through the pointer because each isconst . Pointer
p4 may only point at variablex. In this case, the pointer cannot change to point at a different variable because it
is const , but the value of the variable can be changed through the pointer. Pointerp5 may only point at variable
z. In this case, the pointer cannot change to point at a different variable because it isconst , and the value of the
variablez cannot be changed through the pointer because it is alsoconst .

2. C++ reference: created using the& type-constructor, may point to any type (i.e., basic or object type) in any stor-
age location (i.e., global, stack or heap storage), restricted to a constant pointer to user created (non-temporary/-
non-constant) storage, and always has implicit dereferencing.) Edit file hello.C) Make the following modification to routinemain:

int main() { // Ex06
int x, y; // basic type
int &r1 = x, &r2 = y; // restricted reference to basic type
r1 = 5; // initialize x, implicit dereferencing
r2 = 7; // initialize y, implicit dereferencing
r2 = r1; // value assignment, implicit dereferencing
r1 = r2 * 3; // implicit dereferencing
cout << "&r1:" << &r1 << " r1:" << r1 << endl;
cout << "&r2:" << &r2 << " r2:" << r2 << endl;

}) Compile the program, run it, check the output, and make sure you understand it.) Change the initialization ofr1 to x + y and then to3.) Compile the program for each change and explain the error message.

Due to the constant-pointer restriction, a C++ reference isequivalent to a Javafinal reference or* const pointer
with implicit dereferencing (see previous diagram). A Javareference can vary what it points to, but it can only
point to objects in heap storage (see Section13, p.26). The C++ constant-pointer restriction has two implications:� A C++ reference must be initialized at the point of declaration. Note, the initializing expression has implicit

referencing because an address isalwaysrequired; hence, putting an& before the initializing expression is
an error because there is implicitly one there:

int &r1 = &x; // error, unnecessary & before x� There is no need for address assignment after a C++ referencedeclaration because the address cannot

C++ Tutorial 13

change. Whereas, a Java reference always interpretsr2 = r1 as address assignment and provides no mech-
anism to perform value assignment between reference types,i.e., no assignment of the member values in
one object to the corresponding members in another.

Finally, the pointer/reference type-constructor in C/C++is not distributed across the identifier list, e.g.:

int * p1, p2; // only p1 is a pointer, p2 is an integer, should be
int & rx, ry; // only rx is a reference, ry is an integer, should be

int *p1, *p2;
int &rx, &ry;

8.6.3 Aggregation (structure/array)

Like Java, C++ is object-oriented, but it does not subscribeto the Java notion that everything is a basic type or an object.
Instead, aggregation is performed by structures and arrays, and computation is performed by routines; an object type
is the composition of a structure and routines (see Section17, p. 34). As a consequence, in C++, a routine can exist
without being embedded in astruct /class (see Section14, p. 29).

Structure is a mechanism to group together heterogeneous values, including (nested) structures:

Java C/C++

class foo {
public int i = 3;
. . . // more fields

}

struct foo {
int i; // no initialization
. . . // more members

}; // semi-colon terminated

The components of a structure are calledmembers3 in C++. Like Java, all members of a structure are accessible
(public) by default (excluding Javapackage visibility). Unlike Java, a structure member cannot be directly initialized
(see Section8.7and 17.3, p. 37), and a structure is terminated with a semicolon.

As for enumerations, a structure can be defined and instancesdeclared in a single statement.) Edit file hello.C) Make the following modification to routinemain:
int main() { // Ex07

struct complex { double r, i; }; // type declaration
complex a, b; // variable declaration
struct { double r, i; } c, d; // anonymous type and variable declaration
struct Complex { double r, i; } e; // type and variable declaration
a.r = 3.0; // . (period) is used for member selection and decimal point
a.i = 2.1;
b = a; // copies both members r and i
cout << "a=" << a.r << "+" << a.i << "i" << endl;
cout << "b=" << b.r << "+" << b.i << "i" << endl;
c = a; d = b; e = a; // assignments allowed ?

}) Compile the program.) While the messages from the compiler are cryptic, why are they generated (think name equivalence for types)?) Comment-out the last line, and compile and run the program.

In C, the keywordstruct must always be specified when declaring a structure variable:
struct complex a, b; // repeat “struct” on variable declaration

Recursive types, like lists and trees, can be defined using a pointer in a structure:
struct node {

. . . // data members
node *link; // pointer to another node

};

Array is a mechanism to group together homogeneous values. The array in C/C++ is primitive in comparison to Java
because dimension information is not stored with an array object. Therefore, there is no equivalent to Java’slength
member for arrays,no subscript checking, and no array assignment. (See Section21, p. 51 for the C++vector type,

3Java subdivides members into fields (data) and methods (routines).

14 C++ Tutorial

which is similar to a Java array.) Unlike Java, array variables in C/C++ can have dimensions specified on declaration
and all the array elements are implicitly allocated:

int x[10]; // int x[] = new int[10]
int y[10][20]; // int y[][] = new int[10][20]

Be careful not to write (explained in Section9):
int b[10, 20]; // not int b[10][20]

C++ only supports a compile-time dimension value;g++ allows a runtime expression.
int r, c;
cin >> r >> c; // input dimensions (reading is explained later)
int array[r]; // dynamic dimension, g++ only
int matrix[r][c]; // dynamic dimension, g++ only

Like Java, an array is subscripted starting at 0.) Edit file hello.C) Make the following modification to routinemain:
int main() { // Ex08

char c1[3], c2[3];
c1[0] = ’T’; c1[1] = ’o’; c1[2] = ’m’; // initialization
c2[2] = c1[0]; c2[1] = c1[1]; c2[0] = c1[2]; // array copy
cout << c1[0] << c1[1] << c1[2] << endl;
cout << c2[0] << c2[1] << c2[2] << endl;
int v[3];
v[0] = 93; v[1] = 67; v[2] = 77; // initialization
cout << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << endl;

}) Compile the program, run it, and check the output.

Notice the invalid subscript,v[3], does not generate an error and prints an undefined value!

8.6.4 ./ Type Aliasing

Java provides no mechanism to rename types; C/C++ providestypedef
typedef short int shrint1; // shrint1 => short int
typedef shrint1 shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrint1 s1; // implicitly rewritten as: short int s1
shrint2 s2; // implicitly rewritten as: short int s2
shrint3 s3; // implicitly rewritten as: short int s3

All possible combinations of assignments are allowed amongthe variabless1, s2 ands3, because they have the same
type name “short int ” (see “name equivalence” in Section8.6, p.9).

8.7 ./ Type-Constructor Constant

enumeration enumerators
pointer 0 or NULL indicates a null pointer
structure struct { double r, i; } c = { 3.0, 2.1 };
array int v[3] = { 1, 2, 3 };

C/C++ use0 to initialize pointers versusnull in Java. Certain system include-files define the preprocessor variable
NULL as0 (see Section11, p. 21).

Structure and array initialization can only occur as part ofa declaration. (g++ allows type-constructor constants
in executable statements, see Section9.1, p. 17.) Values in the initialization list are placed into a variable starting at
the beginning of the structure or array, but not all the members/elements have to be initialized. A nested structure or
multidimensional array is initialized by creating corresponding nesting levels using braces:

struct { int i; struct { double r, i; } s; } d = { 1, { 3.0, 2.1 } }; // nested structure initialization
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array initialization

String constants can be used as a shorthand array initializer value:
char s[6] = "abcde"; implicitly rewritten as char s[6] = { ’a’, ’b’, ’c’, ’d’, ’e’, ’\0’ };

C++ Tutorial 15

When initializing, it is possible to leave out the first dimension, and the compiler infers its value from the number of
constants in that dimension:

char s[] = "abcde"; // first dimension inferred as 6 (Why 6?)
int v[] = { 0, 1, 2, 3, 4 } // first dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // first dimension inferred as 2) Edit file hello.C) Make the following modification to routinemain:

int main() { // Ex09
char n[] = "Tom";
int m[][2] = { {93, 67}, {77, 81} };
struct complex { double r, i; } c = { 3.4 }; // not all members initialized
cout << n[0] << n[1] << n[2] << endl;
cout << m[0][0] << " " << m[0][1] << " " << m[1][0] << " " << m[1][1] << endl;
cout << c.r << " " << c.i << endl;

}) Compile the program, run it, and check the output.

9 Expression

Java C/C++ priority

unary ., (), [], call ., ->, (), [], call, dynamic_cast high
cast,+, -, !, ~, new cast,+, -, !, ~, &, *, new , delete , sizeof

binary *, /, % *, /, %
+, - +, -

bit shift <<, >>, >>> <<, >>
<, <=, >, >=, instanceof <, <=, >, >=
==, != ==, !=
& &

exclusive-or^ ^
| |
&& &&
| | | |
?: ?:
=, +=, -=, *=, /=, %=, <<=, >>=, >>>=, &=, ^=, |= =, +=, -=, *=, /=, %=, <<=, >>=, &=, ^=, |=

, low

Like algebra, both Java and C/C++ prioritize operators and perform the operations in an expression from highest to
lowest priority. If two operators have the same priority, they are done left to right, except for unary,?:, and assignment
operators, which associate right to left. In Java, the orderof evaluation of subexpressions of an operator and argument
evaluation is from left to right; however, in C/C++, it is unspecified:

(i + j) * (k + j); // either + may be done first
(i = j) + (j = i); // either = may be done first
g(i) + f(k) + h(j); // g, f, or h may be called in any order
f(p++, p++, p++); // arguments may be evaluated in any order

Both the referencing (address-of),&, and dereference,*, operators (see Section8.6.2, p. 10) do not exist in Java
because access to storage is restricted. Note, it is possible to determine the address of any variable in any storage
context, e.g.,&x is the address ofx, &s.d is the address of memberd in structures, and&v[5] is the address of array
elementv[5].

The arrow operator,->, is unique to C/C++ and is an anomaly among programming languages. It exists solely
because the priority of the selection operator “.” is incorrectly higher than the dereference operator “*”, so *p.f executes
as*(p.f) instead of(*p).f. Rather than correct this mistake, the special-> operator exists to perform a dereference and
member selection in the correct order, i.e.,p->f is implicitly rewritten as(*p).f.) Edit file hello.C) Make the following modification to routinemain:

16 C++ Tutorial

int main() { // Ex10
struct node { int val; node *link; };
node x = { 5, NULL }, y = { 3, &x }, *n = &y;
cout << n->val << endl; // print first node
n = n->link; // n = (*n).link, advance to next node
cout << n->val << endl; // print second node

}) Compile the program, run it, and check the output (drawing a picture of the linked list is helpful).

The pseudo-routinesizeof does not exist in Java because it is related to explicit storage management. It returns
the number of bytes for a type or variable:

long int i;
sizeof (long int); // type, at least 4
sizeof (i); // variable, at least 4

Thesizeof a pointer (type or variable) is the size of the pointer on thatparticular computer and not the size of the type
the pointer references.) Edit file hello.C) Make the following modification to routinemain:

int main() { // Ex11
struct node { int val; node *link; };
node x = { 5, NULL }, y = { 3, &x }, *n = &y;
cout << sizeof (node) << " " << sizeof (x) << " " << sizeof (n) << " " << sizeof (*n) << endl;
cout << sizeof ("abc") << endl;

}) Compile the program, run it, and check the output.

The bit-shift operators,<< (left), and>> (right), are identical to those in Java. (Notice, the bit-shift operators are
overloading with the input and output operators in C++.) They are used to shift bits in integral variables left and right.
Shifting left is defined to be equivalent to multiplying by 2,modulus the variable’s size; shifting right is equivalent to
dividing by 2 if the integer is unsigned or positive, and undefined otherwise. For example,1 << 3 shifts the value 1, 3
bits left, giving 8, while8 >> 3, shifts the value 8, 3 bits right, giving 1. The Java>>> operator does not exist in C/C++
and handles shifting right for positiveandnegative values.

Like Java, assignment in C/C++ is an operator, which is useful for cascade assignmentto initialize multiple vari-
ables of the same type to a common value:

a = b = c = 0; // cascade assignment
x = y = z + 4;

Other uses of assignment in an expression are discouraged because changing variables during the evaluation of an
expression can cause unknown side-effects. Except for cascade assignment, good programming practice is to have
only one assignment in an expression on the left-hand side, i.e., one side-effect after an expression is evaluated.
Finally, unlike Java, C/C++ allows any expression to appearas a statement:

3; j + i; (i + j) * (k + j); sin(x);

Other assignment operators, such aslhs += rhs, are implicitly rewritten as:
temp = &(lhs); *temp = *temp + rhs;

Hence, the left-hand side,lhs, is evaluated only once:
v[rand() % 5] += 1; // only calls random once
v[rand() % 5] = v[rand() % 5] + 1; // calls random twice

The first expression increments a random element of the array, while the second increments a random value of the
array, and assigns the incremented value to a random and probably different element of the array.

The comma expression is a series of expressions separated bycommas; the expressions are evaluated left to right
with the value of the rightmost expression returned as the result of the comma expression. The comma expression
allows multiple expressions to be evaluated in a context where only a single expression is allowed (see page21). Note,
the earlier dimension problem withb[10, 20] (see page14) actually meansb[20] because10, 20 is a comma expression
not a dimension list. The same problem occurs with subscripting asb[3, 4] meansb[4], the 4th row of the matrix.

C++ Tutorial 17

This tutorial strongly discourages the general use of the increment/decrement operators++ and-- even though both
are standard idioms in Java and C/C++ (see page54). Having a special operator to increment/decrement by one is
largely superfluous and is an anomaly among programming languages. It is more general to usei += 1 rather thani++
because the former can be trivially changed to add any amountand the latter cannot.

9.1 Conversion

Conversion is transforming a value from one type to another type, which can be performed implicitly or explicitly (see
Section17.3.2, p. 39). Conversions are divided into two kinds:� wideningconversion, no information is lost:

char ! short int ! long int ! double
’\x7’ 7 7 7.000000000000000� narrowingconversion, information can be lost:

double ! long int ! short int ! char
77777.77777777777 77777 12241 ’\xd1’

Java only supports implicit widening conversions; C/C++ support both implicit widening and narrowing conversions.
Clearly, implicit narrowing conversions can cause problems, such as:

int i;
double r;
i = r = 3.5; // value of r?
r = i = 3.5; // value of r?

In both expressions,i is assigned the value3 because of the implicit conversion of floating-point to integer, butr is
assigned3.5 in the first expression and3.0 in the second because its value is first narrowed to3 and then widened to
3.0. Be careful!

Like Java, C/C++ support explicit narrow conversions usingthecastoperator. Due to potential loss of information,
it is good programming practice in C/C++ to use an explicit narrowing conversion rather than an implicit one:

int i;
double x, y;
i = (int) x; // explicit narrowing conversion
i = (int) x / (int) y; // explicit narrowing conversions to get integer division
i = (int)(x / y); // alternative technique

C/C++ supports casting among the basic types and user definedtypes (see Section17, p.34).) Edit file hello.C) Make the following modification to routinemain:
int main() { // Ex12

char c;
short int si;
long int li;
double d;
d = li = si = c = ’\x41’; // implicit widening conversions
cout << (int)c << " " << si << " " << li << " " << d << endl;
c = si = li = d = 77777.77777777777; // implicit narrowing conversions
cout << (int)c << " " << si << " " << li << " " << d << endl;

}) Compile the program, run it, check the output for anomalies,and make sure you understand it.

The cast “(int)” of variablec forcesc’s value to be printed as an integer and not a character. (Try running the program
without the cast.) Again, some of the printed values are different from the constants in the assignment statements.

As mentioned in Section8.7, p.14, g++ has a cast extension allowing construction of structure andarray constants
in executable statements not just declarations:

void rtn(const int m[2][3]);
struct complex { double r, i; } c;
rtn((int [2][3]){ {93, 67, 72}, {77, 81, 86} }); // g++ only
c = (complex){ 2.1, 3.4 }; // g++ only

In both cases, a cast is used to indicate the meaning and structure of the constant.

18 C++ Tutorial

10 Control Structure
Java C/C++

block { intermixed decls/stmts } { intermixed decls/stmts }
selection if (bool-expr1) stmt1

else if (bool-expr2) stmt2
. . .
else stmtn

if (cond-expr1) stmt1
else if (cond-expr2) stmt2
. . .
else stmtn

switch (integral-expr) {
case c1: stmt1; break ;
. . .
case cn: stmtn; break ;
default : stmt0;

}

switch (integral-expr) {
case c1: stmt1; break ;
. . .
case cn: stmtn; break ;
default : stmt0;

}

looping while (bool-expr) stmt while (cond-expr) stmt

do stmt while (bool-expr) ; do stmt while (cond-expr) ;

for (init-expr ; bool-expr ; incr-expr) stmt for (init-expr ; cond-expr ; incr-expr) stmt

transfer break [label] break
continue [label] continue

goto label
return [expr] return [expr]

label label : stmt label : stmt

10.1 Block

A block is a series of statements bracketed by braces,{. . .}, which can be nested one within another. (As opposed to
a comma expression, see page16, which only contains expressions.) A block serves two purposes: bracket several
statements into a single statement and introduce local declarations. For control structures requiring a statement, a good
programming practice is to always use a block as it allows easy insertion and removal of statements to or from that
block. Putting local declarations precisely where they areneeded can help reduce declaration clutter at the beginning
of an outer block; however, it can also make locating them more difficult.

10.2 ./ Conditional

Java uses a “boolean” expression in control structures thatcauses conditional transfer based on the result of the ex-
pression, e.g., inif , while , do , andfor control structures. C/C++ uses a “conditional” expressionin the same context,
which is evaluated and implicitly tested for not equal to zero, i.e.,cond-expr � expr != 0. Boolean expressions are
converted to 0 forfalse and 1 fortrue before comparison to zero, e.g.:

if (x > y) . . . implicitly rewritten as if ((x > y) != 0) . . .

As a result, other expressions are allowed in a conditional,giving the following C/C++ idiom:
if (x) . . . implicitly rewritten as if ((x) != 0) . . .
while (x) . . . while ((x) != 0) . . .

Watch for the common mistake in a conditional:
if (x = y) . . . implicitly rewritten as if ((x = y) != 0) . . .

which assignsy to x and testsx != 0.) Explain the one situation in Java where this mistake also occurs. (Think about the type of the operands.)

10.3 Selection

The C/C++ selection statements,if andswitch , are the same as in Java, except for the difference between boolean and
conditional expression (see Section10.2).

An if statement selectively executes one of two alternatives based on the result of a comparison, e.g.:
if (x > y) max = x;
else max = y;

C++ Tutorial 19

Like Java, C/C++ has thedangling elseproblem of correctly associating anelse clause with its matchingif in nested
if statements. For example, reward the WIDGET salesperson whosold more than $10,000 worth of WIDGETS and
dock the pay of those who sold less than $5,000.

Dangling Else Fix Using Null Else Fix Using Blocks

if (sales < 10000)
if (sales < 5000)
income -= penalty;

else // incorrect match!!!
income += bonus;

if (sales < 10000)
if (sales < 5000)

income -= penalty;
else ; // null statement

else
income += bonus;

if (sales < 10000) {
if (sales < 5000) {

income -= penalty;
}

} else {
income += bonus;

}

The solution using blocks is preferred because it allows easy addition or removal of statements.
A switch statement selectively executes one ofN alternatives based on matching an integral value with a series of

case clauses, e.g.:
switch (day) { // integral expression

case MON: case TUE: case WED: case THU: // list of case values
cout << "PROGRAM" << endl;
break ; // exit switch

case FRI:
wallet += pay;
// fall through !!!!!

case SAT:
cout << "PARTY" << endl;
wallet -= party;
break ; // exit switch

case SUN:
cout << "REST" << endl;
break ; // exit switch

default :
cerr << "ERROR" << endl;
exit(-1); // terminate program

}

Once a case clause is matched, its statements are executed, and control continues to thenextstatement. Like Java, a
break statement is used at the end of a case clause to exit theswitch statement. (It is a common error to forget the
break .) If no case clause is matched and there is adefault clause, its statements are executed, and control continuesto
thenextstatement; otherwise, theswitch statement does nothing. Only one label is allowed for eachcase clause but
a list of case clauses is possible.

10.4 Conditional Expression Evaluation

Conditional expression evaluation is used to perform partial evaluation of expressions. These are control structures,
not true operators because both operands may not be evaluated, as for real operators.

Symbol Meaning

&& short-circuit logical and: only evaluates the right operand if the left operand is true
| | short-circuit logical or: only evaluates the right operandif the left operand is false
?: if statement in an expression: only evaluates one of two alternative parts of an expression

Conditional&& and| | (often referred to asshort-circuit), are similar to logical& and| for boolean operands, i.e., both
produce a logical conjunctive or disjunctive result. However, conditional&& and | | evaluate operands lazily until a
result is determined, short-circuiting the evaluation of other operands, while logical& and| evaluate operands eagerly,
evaluating both operands. In many situations with boolean operands, the corresponding operators are interchangeable.) Edit file hello.C) Make the following modification to routinemain:

20 C++ Tutorial

int main() { // Ex13
if ((cout << "a", true) | (cout << "b", true)) cout << endl; // note, comma expression
if ((cout << "a", true) | | (cout << "b", true)) cout << endl; // note, comma expression

}) Compile the program, run it, check the output, and make sure you understand it.

Conditional?: evaluates one of two expressions, and returns the result of the evaluated expression, i.e., it acts like
an if statement in an expression, e.g.,abs2 = (a < 0 ? -a : a) + 2. Like the comma expression, this operator is used
infrequently.) Edit file hello.C) Make the following modification to routinemain:

int main() { // Ex14
int w = 1;
cout << "There " << (w>1 ? "are ":"is ") << w << " widget" << (w>1 ? "s":"") << endl;
w = 2;
cout << "There " << (w>1 ? "are ":"is ") << w << " widget" << (w>1 ? "s":"") << endl;

}) Compile the program and run it.

10.5 Looping

The C/C++ looping statements are the same as in Java, except for the difference between boolean and conditional
expression (see Section10.2, p. 18). A while statement executes its statement zero or more times, ado statement
executes its statement one or more times, and afor statement is a specializedwhile statement for iterating using an
index. As for Java, beware of accidental infinite loops:

x = 0;
while (x < 5); // extra semicolon!

x = x + 1;

x = 0;
while (x < 5) // missing block

y = y + x;
x = x + 1;) Edit file hello.C) Make the following modification to routinemain:

int main() { // Ex15
int val = 1; // initialize
while (val) { // conditional

cout << val << endl;
val <<= 1; // shifting left 1 bit position

}
}) Compile the program and run it.) Explain the last value printed and why the loop stopped. (Think of the internal representation of integer values

and how a conditional works.)

The for statement is a specializedwhile statement with an index:
init-expr ;
while (cond-expr) {

stmt;
incr-expr ;

}

for (init-expr ; cond-expr ; incr-expr) {
stmt;

}

There are many ways to use thefor statement to construct iteration:
for (i = 1; i <= 10; i += 1) { // count up

// loop 10 times
} // i has the value 11 on exit
for (i = 10; 1 <= i; i -= 1) { // count down

// loop 10 times
} // i has the value 0 on exit

C++ Tutorial 21

for (p = l; p != NULL; p = p->link) { // pointer index
// loop through list structure

} // p has the value NULL on exit
for (i = 1, p = l; i <= 10 & p != NULL; i += 1, p = p->link) { // 2 indices

// loop until 10th node or end of list encountered
}

The last example illustrates the use of the comma expression(see page16) to initialize and increment 2 indices in a
context where normally only a single expression is allowed.While the loop control variable can be modified in the
loop body, it is discouraged. A default value oftrue is inserted if no conditional is specified for afor statement.

for (; ;) // rewritten as: for (; true ;)) Edit file hello.C) Make the following modification to routinemain:
int main() { // Ex16

int val;
for (val = 1; val; val <<= 1) {

cout << val << endl;
}

}) Compile the program and run it.

A common example of short-circuit expression evaluation (see Section10.4, p. 19) is a linear search of an array
for a key, where the loop index indicates the position of the key in the array if the key is found, or the array size plus 1
if not found:

for (i = 0; i < size && list[i] != key; i += 1); // no loop body

The short-circuit&& only evaluates the second operand of the conditional if the first operand is true, otherwise there is
a potential subscript error when the key is not found:i is equal tosize on the last loop iteration, and if both operands
are evaluated, it results inlist[size], which is one past the end of the array (subscripts have origin zero). Therefore,
using logical& would be incorrect because it evaluates both operands. Why worry about array subscript problems,
even when C/C++ does not perform subscript checking? The reason is that the invalid subscript can result in other
errors, such as addressing outside the program’s memory, which is called asegment fault.

Finally, thecontinue /break statements can be used in all iteration constructs to cause immediate advancement to
the next loop iteration or termination of the loop construct, respectively. The previous linear search using short-circuit
&& can be rewritten using loop exits.

for (i = 0; ; i += 1) { // infinite loop, conditional defaults to “true”
if (i == size) break ; // exit if not found
if (list[i] == key) break ; // exit if found

}

Since the loop exits wheni is equal tosize a subscript error cannot occur. Unlike Java, C/C++ does not support labelled
continue /break for transferring among multiple levels of nested control structures.

Thegoto statement is not discussed (see a C++ textbook), but it is similar to the Java labelledbreak andcontinue .

11 ./ Preprocessor
The preprocessor manipulates the text of the programbeforecompilation (see Section6.2, p. 6). Hence, the program
you see is not what the compiler sees; the compiler sees the programafter it is changed by the preprocessor. Occa-
sionally it is necessary to use the-E flag (see Section4, p.4) to print the output of the preprocessor to understand why
the compiler is generating error messages.

The three most commonly used preprocessor facilities are substitution, file inclusion, and conditional inclusion
(see a C++ textbook for other preprocessor facilities). Thesyntax of a preprocessor statement is a# at the start of a
line, followed by optional spaces, and then a preprocessor statement;no semi-colon!

11.1 Substitution

The#define statement declares a preprocessor variable, and its value is all the text after the name up to the end of line.) Edit file hello.C

22 C++ Tutorial) Enter the following program (including comments):
#define Integer int // Ex17
#define begin {
#define end }
#define PI 3.14159
#define X 1 +
#define Y Fred =
Integer main() begin // same as: int main() {

Integer x = 3; // same as: int x = 3;
Y X PI; // same as: Fred = 1 + 3.14159;
X Y PI; // same as: 1 + Fred = 3.14159;

end // same as: }) Compile the program with the command:g++ -E hello.C) Look carefully at the output.

The initial lines starting with# inform the compiler of the source-file name and other information so the compiler can
generate meaningful error messages. Then there is an empty space where the preprocessor#define s used to be; since
preprocessor statements are not understood by the compiler, they are removed. Finally, the preprocessed statements
appear, without comments, which the compiler sees and compiles.

As the example shows, the preprocessor can transform the basic syntax of a C/C++ program (discouraged). It is
also possible to make mistakes that are difficult to locate, because what you see is not what the compiler sees. Finally,
it is possible to define and initialize preprocessor variables from the compilation command (see Section4, p.4):

g++ -Dxxx=2 -Dyyy . . . source-file1.C

which creates two preprocessor: variablesxxx, which is initialized to 2, andyyy, which is uninitialized; both variables
exist in the compilation of each source file in the compilation command. Finally, a C/C++ compiler may have predefined
preprocessor-variables identifying the kind of hardware the compiler is generating code for, e.g., variablemcpu is
assigned the kind of CPU.

Traditionally, textual substitution was used to give namesto constants; this is better done usingconst declarations
(final in Java):

const double PI = 3.14159;
const int arraySize = 100;

#define can also be used to declare macros with parameters, which expand inline during compilation, textually sub-
stituting arguments for parameters, e.g.:

#define MAX(a, b) ((a > b) ? a : b)
z = MAX(x, y); // implicitly rewritten as: z = ((x > y) ? x : y)

However, this capability is better handled byinline routines in C/C++ (see a C++ textbook for details).

11.2 File Inclusion

File inclusion is used to copy a block of text from a file into a C/C++ program; an included file may contain anything.
In effect, file inclusion is a shorthand for retyping the sametext into a program. Most commonly, an include file
contains preprocessor and C/C++ declarations for library routines used in a program. All included text goes through
every compilation step, i.e., preprocessor, compiler, etc. Java does implicit inclusion by matching class names with
file names inCLASSPATH directories, and extracting and including necessary declarations.

The #include statement specifies the file to be included. C convention usesthe suffix “.h” for include files con-
taining C declarations; C++ convention drops the suffix “.h” for its standard libraries and uses special file names for
equivalent C files (e.g.,cstdio versusstdio.h).

#include "user.h"
#include <system.h> // C style
#include <system> // C++ style

The file name can be enclosed in"" or <>. "" means the preprocessor starts looking for the file in the samedirectory
as the file being compiled, then it looks in the system includedirectories.<> means the preprocessor only looks in the
system include directories. Withg++, it is possible to determine which system include directories are searched.) Enter the command:g++ -v Hello.C) Look carefully at the output for something similar to:

C++ Tutorial 23

#include <. . .> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

The list of UNIX path names are the system directories in which the compiler searched for files.
The system include fileslimits.h andunistd.h contains many useful#define s, like the null pointer constantNULL.) Edit file: /usr/include/limits.h) Look carefully at the file. While not all of the file may make sense, notice some of the useful#define s.

11.3 Conditional Inclusion

The preprocessor has anif statement, which may be nested, to conditionally add/remove code from a program. The
conditional of theif uses the same relational and logical operators as C/C++, butthe operands can contain only integer
or character values (no float or string values).

#define DEBUG 0 // declare and initialize preprocessor variable
. . .
#if DEBUG == 1 // level 1 debugging
include "debug1.h"
. . .
#elif DEBUG == 2 // level 2 debugging
include "debug2.h"
. . .
#else // non-debugging code
. . .
#endif

By changing the value of the preprocessor variableDEBUG, different parts of the program can be included into the
compilation.

A simple way to exclude code (comment-out) is to have a0 conditional because0 implies false.
#if 0
. . . // code commented out
#endif

It is also possible to check if a preprocessor variable is defined or not defined by using#ifdef or #ifndef , respectively:
#ifndef _ _MYDEFS_H_ _ // if not defined
#define _ _MYDEFS_H_ _ 1 // make it so
. . .
#endif

This technique is used in an#include file to ensure its contents are only expanded into a program once (see Section24,
p. 56). Notice the difference between checking if a preprocessorvariable is defined and checking the value of the
variable. The former capability does not exist in most programming languages, i.e., checking if a variable is declared
before trying to use it.

12 Input/Output

Input/Output (I/O) is divided into two kinds: formatted andunformatted. Formatted I/O transfers data with implicit
conversion of internal values to/from human-readable form; conversion is based on the type of variables and for-
mat codes. Unformatted I/O transfers data without conversion, e.g., internal integer and floating-point values. Only
formatted I/O is discussed as it is the most common (see a C++ textbook for unformatted I/O).

C++ provides one kind of formatted I/O library and C providesanother. While C++ can use both libraries, only the
C++ library is discussed in detail (see a C textbook for its I/O library).

24 C++ Tutorial

Java C C++

File, Scanner FILE ifstream
PrintStream FILE ofstream

Scanner in = new Scanner(new File("f")) fopen("f", "r"); ifstream in("f");
PrintStream out = new PrintStream("g") out = fopen("g", "w") ofstream out("g")
in.close() close(in) scope ends
out.close() close(out) scope ends

nextInt() fscanf(in, "%d", &i) in >> T
nextFloat() fscanf(in, "%f", &f)
nextByte() fscanf(in, "%c", &c)
next() fscanf(in, "%s", &s)
hasNext() feof(in) in.eof()
hasNextT() fscanf return value in.fail()

in.clear()
skip("regexp") fscanf(in, "%*[regexp]") in.ignore(n, c)

out.print(String) fprintf(out, "%d", i) out << T
fprintf(out, "%f", f)
fprintf(out, "%c", c)
fprintf(out, "%s", s)

Formatted I/O occurs to/from astream filein both Java and C++. Java has three implicit stream files in classSystem:
in, out anderr, which are automatically declared and opened; similarly, C++ has equivalent stream files:cin, cout and
cerr, which are automatically declared and opened. (C usesstdin, stdout andstderr.) As in previous examples, the
system include-fileiostream provides all necessary declarations to use stream filescin, cout andcerr. Like Java streams
in andout, C++ streamcin normally reads input from the keyboard (unless redirected by the shell), andcout writes to
the terminal screen (unless redirected by the shell). In addition, streamcerr writes to the terminal screen even when
cout output is being redirected from the shell.Error and debugging messages should always be written tocerr because
it is normally not redirected by the shell, but more importantly, it is unbuffered so output appears immediately.

To use stream files other than the 3 implicit ones requires declaring each fileobject:
#include <fstream> // required for explicit stream-file declarations
ifstream infile("myinfile"); // input file
ofstream outfile("myoutfile"); // output file

The include filefstream is necessary for declaring stream files. Like Java, each file is declared and the declaration
opensthe file making it accessible through the variable name, e.g., infile andoutfile are used for file access. After
declaration, it is possible to check for successful openingof a file using the stream routinefail, e.g.,infile.fail(), which
returnstrue if the open failed andfalse otherwise (see Figure1, p. 35). Like Java, the type of the file,ifstream or
ofstream, indicates whether the file can be read or written. The connection between the file name in the program and
the actual operating-system file-name is done at the declaration. Hence,infile reads from filemyinfile andoutfile
writes to filemyoutfile, where both files are located in the directory where the program is run.

The C++ I/O library uses overloading (see Section19, p. 44) with operators<< and>> to perform I/O (also used
for bit shift, see page16). C I/O library usesfscanf(outfile,. . .) andfprintf(infile,. . .), which have short formsscanf(. . .)
andprintf(. . .) for stdin andstdout. Parameters in C are always passed by value (see Section14.1, p. 30), so arguments
to fscanf must be preceded with& (except arrays) so they can be changed. Both I/O libraries can cascade multiple I/O
operations, i.e., input or output multiple values in a single expression.

12.1 Input

Java formatted input requiresexplicitspecification of character conversion for all basic types using aScanner attached
to an input file. C/C++ formatted input hasimplicit character conversion for all basic types and is extensible to user-
defined types. Valid input values for a stream file are C/C++ constants:3, 3.5e-1, etc., separated by whitespace, except
for characters and character strings, which are not in quotes. Unfortunately, this exception precludes reading strings
containing white spaces (see Section15, p. 31 for reading entire lines). As mentioned, the>> operator is overloaded
to work with different types of operands. The type of the operand indicates the kind of constant expected in the stream
file, e.g., an integer operand means an integer constant is expected. Streamcin starts reading where the lastcin left

C++ Tutorial 25

off. When all the input values on the current line are read,cin proceeds to the next line. Hence, the placement of input
values on lines of a file is often arbitrary.

Unlike Java, C/C++ must attempt to readbeforeend-of-file is set and can be tested for. End of file can be detected
in two ways: cin and fscanf return0 andEOF when eof is reached, respectively; C++ membereof and the C routine
feof return true when eof is reached.

Java C C++

import java.io.*;
import java.util.Scanner;
Scanner in = new Scanner(new File("f"));
PrintStream out = new PrintStream("g");
int i, j;
while (in.hasNext()) {

i = in.nextInt(); j = in.nextInt();
out.println("i:" + i + " j:" + j);

}
in.close();
out.close();

#include <stdio.h>
FILE *in = fopen("f", "r");
FILE *out = fopen("g", "w");
int i, j;
for (;;) {

fscanf(in, "%d%d", &i, &j);
if (feof(in)) break ;

fprintf(out, "i:%d j:%d\n", i, j);
}
close(in);
close(out);

#include <fstream>
ifstream in("f");
ofstream out("g");
int i, j;
for (;;) {

in >> i >> j;
if (in.eof()) break ;

out << "i:" << i
<< "j:" << j << endl;

}
// in/out closed implicitly

Note, there is no end-of-file character; end-of-file is the detection of the physical end of a file. When reading from the
keyboard, a special indicator is required to cause the shellto close the current input file marking its physical end. The
indicator, normally<ctrl>-d (press the<ctrl> andd keys simultaneously), is a signal to the shell andnot read bycin.) Edit file hello.C) Enter the following program:

#include <iostream> // Ex18
using namespace std;
int main() {

int n;
for (;;) {

cout << "Enter a number: ";
cin >> n;

if (cin.eof()) break ; // eof ?
if (! cin.fail()) { // number ?

cout << "n = " << n << endl;
} else {

cout << "Not a number. ";
cin.clear(); // reset stream failure
cin.ignore(numeric_limits<int >::max(), ’\n’); // skip until newline

}
}
cout << endl;

}) Compile and run the program, entering some integer and non-integer values.) End the input and the program by entering<ctrl>-d

After reading, it is possible to check for a successful read using the stream routinefail, e.g.,cin.fail(), which returns
true if the read failed andfalse otherwise. After an unsuccessful read, a call toclear() is necessary to reset the stream.
The ignore member skips eithern characters, e.g.,cin.ignore(5) or until a specified character, as above.

12.2 Output

Java output style converts values to strings, concatenatesthese strings, and prints the final long string:
System.out.println(i + " " + j); // build a string and print it

Whereas, C/C++ output style supplies a list of formats and values, and the output operation generates the strings:
cout << i << " " << j << endl; // print each string as it is formed

As such, there is no implicit conversion from the basic typesto string in C++ (but one can be constructed). While it is
possible to use the Java string-concatenation style in C++,it is an incorrect style.

26 C++ Tutorial

Many examples of output have already been presented, so the discussion here is on how to control the format of out-
put (and input). The main mechanism to control input/outputformat is viamanipulators, which appear in a cascaded
input/output expression and apply to all constants/variables after it (except forsetw). The following manipulators are
available by includingiomanip:

oct print values in octal
dec print values in decimal
hex print values in hexadecimal
left / right (default) print values with padding after / before values
boolapha / noboolapha (default) print bool values as false/true instead of 0/1
showbase / noshowbase (default) print values with / without prefix 0 for octal & 0x for hex
fixed (default) /scientific print float-point values without / with exponent
setprecision(N) print fraction of float-point values in maximum of N columns
setw(N) print NEXT VALUE ONLY in minimum of N columns
setfill(’ch’) padding character before/after value within a fixed width (default blank)
endl flush current output buffer and start a new line (output only)
skipws (default) /noskipws skip whitespace characters (input only)

Note,endl is not the same as’\n’; only the former is guaranteed to flush the buffer for interactive output.) Edit file hello.C) Enter the following program:
#include <iostream> // Ex19
#include <iomanip> // manipulators
using namespace std;
int main() {

bool b = true ;
int i = 27;
double d = 3.5;
char c = ’a’;
char s[] = "abc";
cout << showbase << right << boolalpha << setprecision(2)

<< " b:" << b
<< " i:" << setw(3) << i
<< " d:" << fixed << setw(7) << d
<< " i:" << i
<< " c:" << c
<< " d:" << d
<< " s:" << s
<< oct << " i:" << setw(5) << i
<< " i:" << i
<< endl;

}) Compile and run the program.) Try some of the other manipulators to vary the format of the output. e.g., changeright to left andfixed toscientific,
add some other manipulators in different places, etc.

Notice manipulatorsetw only applies to the next value in the I/O expression while theother manipulators apply to all
values after it and even to the next I/O expression for a specific stream file.

13 ./ Dynamic Storage Management

C++ operatornew is like Javanew ; both take a type operand and return a pointer to new storage of that type allocated
in an area called theheap. Unlike Java, C/C++ allowall types to be dynamically allocated not just object types, e.g.,
new int . However, C/C++ do not havegarbage collectionof dynamically allocated storage after the variables usingit
no longer need it; therefore, there is an additional dynamicstorage-management operation tofreestorage. C++ provides
one kind of dynamic storage-management operations,new /delete and C provides another,malloc/free (see a textbook
for the C form).Do not mix the two forms in a C++ program.

C++ Tutorial 27

Java C/C++

class foo {
char a, b, c;

}
class test {

public static void main(String[] args) {
foo f = new foo();
f.c = ’R’;

}
}

struct foo {
char a, b, c;

};

int main() {
foo *f = new foo(); // optional parenthesis
f->c = ’R’;
delete f; // explicitly free storage

}

In C++, the parenthesis after the type name in thenew operation are optional. As well, once storage is no longer needed
it must be explicitly deleted as there is no implicit garbagecollection. After storage is deleted, it should not be used:

delete f;
f->c = ’S’; // result of dereference is undefined

Unlike Java, aggregate types can be allocated on the stack, i.e., local variables of a block:

Java C++

{ // basic & reference types only
int i;
double d;
ObjType obj = new ObjType();
. . .

} // obj garbage collected ...

d

obj

heap
i

stack { // all types
int i;
double d;
ObjType obj;
. . .

} // obj implicitly deleted

stack
i

d

heap

obj
...

Because stack allocation is more efficient than heap allocation and does not require explicit storage management, use
it whenever possible; hence,there is significantly less dynamic allocation in C++. In general, dynamic allocation in
C++ should be used only when:� a variable’s storage must outlive the block in which it is allocated:

ObjType *rtn(. . .) {
ObjType *obj = new ObjType();
. . . // use obj
return obj; // storage outlives block

} // obj deleted later

The storage for variableobj is passedoutsideof the block associated with a call tortn, and hence, its storage
must outlive the block in which it is created.� when each element of an array of objects needs initialization (see Section17.3, p. 37):

ObjType *v[10]; // array of object pointers
for (int i = 0; i < 10; i += 1) {

v[i] = new ObjType(i); // each element has different initialization
}

Declaration of a pointer to an array is complex in C/C++;pay special attention. Because C/C++ do not maintain
array-size information, the dimension value for an array pointer is often unspecified:

int *arr = new int [10]; // think arr[], pointer to an array with 10 elements

The Java notation:
int arr[] = new int [10];

cannot be used becauseint arr[] is actually rewritten asint arr[N], whereN is the size of the initializer value (see
Section8.7, p.14). Note, the lack of dimension information for an array meansthere is no subscript checking.

As well, no dimension information results in the following ambiguity:

int *var = new int ;

int *arr = new int [10]; // think arr[] 8 8 0 4 640

var

arr

no size

size in
bytes

9

7

5 7 3 5

28 C++ Tutorial

Here, variablesvar andarr have the same type but one is an array, which poses a problem when deleting a dynamically
allocated array. To solve the problem, special syntax is used to distinguish these cases:

delete var; // single element
delete [] arr; // multiple elements

The second syntax indicates the variable has multiple elements (but unknown number and size of dimensions) and the
total array-size is stored with the array for deletion purposes.) What do you think happens if you forget to put[] when deleting an array?

Never do this:
delete [] arr, var; // => (delete [] arr), var;

which is an incorrect use of a comma expression;var is not deleted.) Edit file hello.C) Make the following modification to routinemain:
int main() { // Ex20

int i, size;
cin >> size; // read array dimension
int vals[size]; // g++ only
for (i = 0; i < size; i += 1) { // read values

cin >> vals[i];
}
for (i = size - 1; 0 <= i; i -= 1) { // print values in reverse

cout << vals[i] << " ";
}
cout << endl;

}

which reads a set of data values of the form5 0 1 2 3 4, where the first value 5 indicates the number of values
in the set 0, 1, 2, 3, 4. The program then prints the values out in reverse order from that read in: 4 3 2 1 0) Compile and test the program.) Change the program to dynamically allocate and free the array instead of using theg++ variable dimension size.

Declaration of a pointer to a matrix is equally complex in C/C++. The matrix declarationint *x[5] could mean:

...

3

2

1

8

9 . . .

. . .

. . .

. . .

. . .

x 06 49 2x

On the left is an array of 5 pointers to an array of unknown number of integers, and the right is a pointer to a matrix
of unknown number of rows with 5 columns of integers. The question is whether the* or [] is applied first. In fact,
dimension has higher priority (as for subscript, see Section 9, p. 15), so the declaration is interpreted asint (*(x[5]))
(left example), where parenthesis indicate the ordering ofthe type qualifiers. In general, to read a C/C++ declaration,
parenthesize all the type qualifiers, and read from inside the parenthesis outwards, starting with the variable name and
ending with the type name on the left:

int *(m1[5]); // array of 5 pointers to array of unknown number of integers
int (*m2)[5]; // pointer to a matrix of unknown number of rows and 5 columns) Write out in words the meaning of this declaration:int (*(x[5]))[10].
Answer: arrayof5pointerstoarrayof10integers

Unfortunately, only the left example (above) of declaring amatrix can be generalized to allow a dynamically-sized
matrix; the right example cannot be generalized because thesecond dimension must be a constant.) Edit file hello.C) Make the following modification to routinemain:

C++ Tutorial 29

int main() { // Ex21
int *m[5]; // 5 rows
for (int r = 0; r < 5; r += 1) {

m[r] = new int [4]; // 4 columns per row
for (int c = 0; c < 4; c += 1) { // initialize matrix

m[r][c] = r + c;
}

}
for (int r = 0; r < 5; r += 1) { // print matrix

for (int c = 0; c < 4; c += 1) {
cout << m[r][c] << ", ";

}
cout << endl;

}
for (int r = 0; r < 5; r += 1) {

delete [] m[r]; // delete each row
}

} // implicitly delete array “m”) Compile and test the program.

14 ./ Routine
As mentioned in Section8.6.3, p.13, C++ provides aggregation and routines separately (versuscombined in an object),
e.g., routinemain is not defined in a type. The general form of a routine is:

C C++

void p(or T f(// parameters
T1 a // pass by value

)
{ // routine body

// intermixed decls/stmts
}

void p(or T f(// parameters
T1 a, // pass by value
T2 &b, // pass by reference
T3 c = 3 // optional, default value
)

{ // routine body
// intermixed decls/stmts

}

Like Java, C/C++ divides routines into aprocedureor afunctionbased on the existence of a return type at the beginning
of the routine. A procedure is a routine not returning a value, indicated with a return type ofvoid :

void r(. . .) { . . . }

A routine with no parameters is specified with parametervoid in C and an empty parameter list in C++:
. . . r(void) { . . . } // C: no parameters
. . . r() { . . . } // C++: no parameters

Like Java, routines in C/C++ cannot be nested in other routines, so all routine names are at the same scope level in
a source file. Therefore, the only routine scope is between the global scope of the source file and a routine body:

int i = 1; // global scope
int main() {

int i = 2; // local scope, hides previous variable i
}) Edit file hello.C) Make the following modification to routinemain:

int i = 3; // Ex22
int main() {

cout << i << endl;
int i = 4;
cout << i << endl;

}) Compile the program, run it, check the output, and make sure you understand it.

30 C++ Tutorial

Like Java, a C/C++ procedure terminates when either controlruns off the end of the routine body or areturn
statement is executed; a function terminates when areturn statement is executed.

return ; // procedure, no value returned
return a + b; // function, value returned is the expression a+b

A return statement can appear anywhere in a routine body, and multiple return statements are possible.) Edit file hello.C) Make the following modification to routinemain:
int main() { // Ex23

return 7; // return value to the shell
}) Compile the program and run it.) Print the return value with the commandecho $status from thecsh/tcsh shell orecho $? from thesh/bash shell.) Try returning a different return value and check that the shell receives it.

While it is possible to return the address of a local variable:
int *rtn() {

int n;
return &n;

}

the use of the returned pointer is undefined because the localstorage forn is implicitly freed when the routine returns.

14.1 Argument/Parameter Passing

The two most common forms ofparameter passingare value and reference. Invalue passing, the parameter is
initialized by the argument (often by a bit-wise copy). Inreference passing, the parameter is a reference to the
argument and is initialized to the argument’s address.

pass by value

copy
parameter

argument
pass by reference

address-of (&)

In Java and C, parameter passing is by value, i.e., basic types and object references are copied. In C++, parameter
passing is by value or reference depending on the type of the parameter. For C/C++, when a routine is called, all the
expressions in the argument list are evaluatedin any order(see Section9, p. 15), then the routine’s local variables,
including parameters, are allocated on the stack. For valueparameters, each argument-expression result is used to
initialize the corresponding parameter,which may involve an implicit conversion. For reference parameters, each
argument-expression result is referenced (address of) andthis address is assigned to the corresponding parameter.) Edit file hello.C) Enter the following program:

#include <iostream> // Ex24
using namespace std;
struct complex { double r, i; };
void r(int i, int &ri, complex c, complex &rc) {

ri = i = 3;
rc = c = (complex){ 3.0, 3.0 };

}
int main() {

int i1 = 1, i2 = 2;
complex c1 = { 1.0, 1.0 }, c2 = { 2.0, 2.0 };
r(i1, i2, c1, c2);
cout << i1 << " " << i2 << " " << endl

<< c1.r << " " << c1.i << " " << c2.r << " " << c2.i << endl;
}) Compile the program and run it.) Explain why the arguments passed by value are not changed, while arguments passed by reference are changed.

C++ Tutorial 31) Change the routine call tor(i1, i1+i2, c1, c2).) Compile the program and explain the error message (see Section8.6.2, p.10).

Value passing is most efficient for basic and small structures because the values are accessed directly in the routine
(versus indirectly through a reference). Reference passing is most efficient for large structures and arrays because the
values are not duplicated in the routine.

Type qualifiers can be used to create read-only reference parameters so the corresponding argument is guaranteed
not to be changed by the routine, which provides the efficiency of pass by reference for large variables, the security of
pass by value because the argument cannot change, and allowstemporary variables and constants as arguments:

void r(const int &i, const complex &c, const int v[5]) {
i = 3; // assignments disallowed, read only!
c.r = 3.0;
v[0] = 3;

}
r(i + j, (complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 }); // allow temporary variables and constants

The reasonv is not declared a reference parameter is discussed in Section 14.2.
Unlike Java, a C++ parameter can have adefault value, which is passed as the argument value if no argument is

specified at the call site. In a routine, once a parameter has adefault value, all parameters to the right of it must have
default values. In a call, once an argument is omitted for a parameter with a default value, no more arguments can be
specified to the right of it.

void r(int i, double g, char c = ’*’, double h = 3.5) { . . . }
r(1, 2.0, ’b’, 9.3); // maximum arguments
r(1, 2.0, ’b’); // h defaults to 3.5
r(1, 2.0); // c defaults to ’*’, h defaults to 3.5

14.2 Array Parameter

Like Java, array copy is unsupported (see Section8.6, p. 9) so arrays cannot be passed by value only by reference.
Therefore, all array parameters are implicitly reference parameters, and hence, the reason why parameterv above does
not have a reference symbol. Interestingly, a parameter declaration can specify the first dimension with a dimension
value,[10] (where the dimension is ignored), an empty dimension list,[], or a pointer,*; the declarations within each
row are equivalent:

double sum(double v[5]);
double sum(double *m[5]);

double sum(double v[]);
double sum(double *m[]);

double sum(double *v);
double sum(double **m);

Good programming practice uses the middle form because it clearly indicates the variable is going to be subscripted.
Note, only a formal (parameter) declaration can use the empty dimension; an actual declaration must use*:

double sum(double v[]) { // formal declaration
double *cv; // actual declaration, think cv[]
cv = v; // address assignment

Given the above declarations, it is possible to write a routine to add up the elements of an arbitrary-sized array or
matrix by passing the dimensions explicitly:

double sum(int cols, double v[]) {
int total = 0.0;
for (int c = 0; c < cols; c += 1)

total += v[c];
return total;

}

double sum(int rows, int cols, double *m[]) {
int total = 0.0;
for (int r = 0; r < rows; r += 1)

for (int c = 0; c < cols; c += 1)
total += m[r][c];

return total;
}

15 String
Strings are supported in C by a combination of language and library facilities. The language facility ensures all string
constants are terminated with a character value’\0’. For example, the string constant"abc" is actually an array of
the 4 characters:’a’, ’b’, ’c’, and’\0’, which occupies 4 bytes of storage. The zero value at the end of a string
constant is a sentinel value used by the C string routines to locate the end of a character string by searching through

32 C++ Tutorial

the individual characters for’\0’. Unfortunately, this approach suffers from three drawbacks. First, a string cannot
contain a character with the value’\0’ as that character immediately marks the end of the string. Second, string
operations needing the length of a string must perform a linear search for the character’\0’, which is expensive for
long strings. Third, the management of variable-sized strings is the programmer’s responsibility, making complex
string operations a storage management problem.

Like Java, C++ solves these problems by providing astring type using a length member at the beginning of each
string and managing all of the storage for the variable-sized strings. Unlike Java, instances of the C++string type are
not constant; values can change so a companion type likeStringBuffer in Java is unnecessary. While C++ can use both C
and C++ strings, only C++ strings are discussed (see a C textbook for C strings). The most important point to remember
about astring value is that it can vary in length dynamically, and powerfuloperations are available to manipulate the
characters of the string and search through them.Therefore, it is seldom necessary to iterate through the characters of
a string variable.

JavaString methods C char [] routines C++ string members

strcpy, strncpy =
+, concat strcat, strncat +
compareTo strcmp, strncmp ==, !=, <, <=, >, >=
length strlen length
charAt [] []
substring substr
replace replace
indexOf, lastIndexOf strstr find, rfind

strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of

All of the C++ string find members returnstring::npos if a search is unsuccessful.

string a, b, c; // declare string variables
cin >> c; // read white-space delimited sequence of characters
getline(cin, c, ’\n’); // read remaining characters until newline (newline is default)
cout << c << endl; // print string
a = "abc"; // set value, a is “abc”
b = a; // copy value, b is “abc”
c = a + b; // concatenate strings, c is “abcabc”
if (a == b) // compare strings, lexigraphical ordering
string::size_type l = c.length(); // string length, l is 6
char ch = c[4]; // subscript, ch is ’b’, zero origin
c[4] = ’x’; // subscript, c is “abcaxc”, must be character constant
string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length 3, d is “cax”
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is 3
p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5
p = c.find_first_of("aeiou"); // search for first vowel, p is 0
p = c.find_first_not_of("aeiou"); // search for first consonant (not vowel), p is 1
p = c.find_last_of("aeiou"); // search for last vowel, p is 5
p = c.find_last_not_of("aeiou"); // search for last consonant (not vowel), p is 7) Edit file hello.C) Enter the following program:

C++ Tutorial 33

#include <iostream> // Ex25
#include <string>
using namespace std;
int main() {

string line, word;
string::size_type p, words = 0;
for (;;) { // scan lines from a file

getline(cin, line); // read entire line, but not newline
if (cin.eof()) break ; // end-of-file ?

line += ’\n’; // add newline character as sentinel character
for (;;) { // scan words off line

p =line.find_first_not_of(" \t\n"); // find position of 1st non-whitespace character
if (p == string::npos) break ; // any characters left ?

line = line.substr(p); // remove leading whitespace
p = line.find_first_of(" \t\n"); // find position of 1st whitespace character
word = line.substr(0, p); // extract word from start of line
words += 1; // count word
line = line.substr(p); // delete word from line

} // for
} // for
cout << "words: " << words << endl;

}) Examine the program to determine what it does.) Compile the program and run it with the command:./a.out < hello.C) Check the results with the command:wc -w hello.C

16 Shell Argument

Up to now, routinemain has been written without parameters. However, it actually has two parameters, which are
passed as arguments when the executable file is invoked from the shell. The shell takes the command line tokens and
transforms them into C/C++ arguments. The prototype formain in this case is:

int main(int argc, char *argv[])

argc is the number of tokens in the shell command, including the name of executable file. Because the executable
file-name is included,the count is one greater than in Java. argv is an array of pointers to the character strings that
make up the arguments. For example, if the executable is called in the following way:

./a.out -option infile.C outfile.C

the arguments tomain have the values:

argc = 4
argv[0] = "./a.out\0" // not included in Java
argv[1] = "-option\0"
argv[2] = "infile.C\0"
argv[3] = "outfile.C\0"
argv[4] = 0 // mark end of variable length list

Notice, the call ofmain by the shell is inconsistent with a normal routine call in C/C++ because the arguments are
passed as strings not values of or references to variables. Hence, a shell argument of"32" may have to converted to
an integer.

Like Java, routinemain usually begins by checkingargc for shell arguments. But unlike Java, the C/C++ arguments
are processed in the rangeargv[1] throughargv[argc-1], i.e., starting one greater than Java.

34 C++ Tutorial

Java C/C++

class prog {
public static void main(String[] args) {

switch (args.length) {
case 0: . . . // no args

break ;
case 1: . . . args[0] . . . // 1 arg

break ;
case . . . // others args

break ;
default : . . . // usage message

System.exit(-1);
}
. . .

int main(int argc, char *argv[]) {
switch (argc) {

case 1: . . . // no args
break ;

case 2: . . . args[1] . . . // 1 arg
break ;

case . . . // others args
break ;

default : . . . // usage message
exit(-1);

}
. . .) Edit file hello.C) Enter the program in Figure1(b)but modify it so the input file is optional and defaults tocin if unspecified.) Test your program to ensure it is correct.

17 Object
Object-oriented programming is not a new programming methodology; it was developed in the mid-1960s by Dahl
and Nygaard and first implemented in a programming language called SIMULA. The following is a short review of
the notion of an object.

Objects are based on the notion of a structure, used for organizing logically related data (see Section8.6.3, p. 13):

unorganized organized

int people_age[30];
bool people_sex[30];
char people_name[30][50];

struct person {
int age;
bool sex;
char name[50];

} people[30];

Notice, both code fragments create an identical amount of information; the difference is solely in the way the infor-
mation is organized (and laid out in memory). In essence, a structure is irrelevant from the computer’s perspective
because the information and its manipulation is largely thesame. Nevertheless, a structure is an important adminis-
trative tool for helping programmers organize informationfor easier understanding and convenient manipulation in a
programming language.

The organizational capabilities of the structure are extended by allowing routine members; instances of such a
structure areobjects. Hence, the idea of associating routines with structures isthe basis of objects. The power
behind objects is that each object provides both data and theoperations necessary to manipulate that data in one self-
contained package. Note, a routine member is a constant, andhence, cannot be assigned (e.g., like aconst member).
The following compares the structure and object form for complex numbers, containing a real and imaginary value.

structure form object form

struct complex {
double re, im;

};
double abs(complex *This) { // name “This” is arbitrary

return sqrt(This->re * This->re + This->im * This->im);
}
complex x; // structure
abs(x); // call abs

struct complex {
double re, im;
double abs() {

return sqrt(re * re + im * im);
}

};
complex x; // object
x.abs(); // call abs

Structurecomplex, on the right, now generates objects because it has a routinemember,abs, which calculates the
absolute value of a complex number (distance from the origin).

What is the scope of a routine defined in a structure, i.e., what variables can a routine member access? A normal
C/C++ routine’s scope is the global scope of the source file (see Sections8.3, p. 7 and 14, p. 29). Interestingly, a

C++ Tutorial 35

/*******************
Read/Write integers

java test input-file [output-file]

Example usage:
java test inputfile
java test inputfile outputfile

*******************/
import java.io.*;
import java.util.Scanner;

public class test {
public static void main(String [] args) {

Scanner infile = null;
PrintStream outfile = new PrintStream(System.out);
int i;

switch (args.length) {
case 2:

try {
outfile = new PrintStream(args[1]);

} catch (FileNotFoundException e) {
System.out.println("Open failure \""

+ args[1] + "\"");
System.exit(-1); // TERMINATE!

}
// FALL THROUGH

case 1:
try {

infile = new Scanner(new File(args[0]));
} catch (FileNotFoundException e) {

System.out.println("Open failure \""
+ args[0] + "\"");

System.exit(-1); // TERMINATE!
}
break ;

default :
System.out.println(
"Usage: input-file [output-file]");

System.exit(-1); // TERMINATE!
}

while (infile.hasNext()) {
i = infile.nextInt();

outfile.println(i);
}
infile.close();
outfile.close();

}
}

(a) Java

/*******************
Read/Write integers

./a.out input-file [output-file]

Example usage:
./a.out inputfile
./a.out inputfile outputfile

*******************/
#include <iostream> // Ex26
#include <fstream>
using namespace std;

int main(int argc, char *argv[]) {
istream *infile;
ostream *outfile = &cout;
int i;

switch (argc) {
case 3:

outfile = new ofstream(argv[2]);
if (outfile->fail()) {

cerr << "Open failure \""
<< argv[2] << "\"" << endl;

exit(-1); // TERMINATE!
} // if
// FALL THROUGH

case 2:

infile = new ifstream(argv[1]);
if (infile->fail()) {

cerr << "Open failure \""
<< argv[1] << "\"" << endl;

exit(-1); // TERMINATE!
} // if
break ;

default :
cerr << "Usage: " << argv[0] <<
" input-file [output-file]" << endl;

exit(-1); // TERMINATE!
}

for (;;) {

*infile >> i;
if (infile->eof()) break ;

*outfile << i;
}
delete infile;
if (outfile != &cout) delete outfile;

}

(b) C++

Figure 1: Processing Shell Arguments

36 C++ Tutorial

structure also creates a scope, and therefore, a routine member can access the structure members. In other words,
scope rules allow the body ofabs, in the right example, to refer to membersre and im, plus any other members in
the global scope. A simple model for understanding scoping is that each routine member is implicitly pulled out of
the structure and rewritten as a routine that takes the structure as an explicit parameter, as in the left example above.
As well, all implicit references to members of the structureare rewritten to explicit references to members of the
parameter, as in the body ofabs on the left. In fact, C++ provides this implicit parameter through the keywordthis ,
which is available in each routine member. So except for the syntactic differences, the two forms are identical.

How is abs called? Normally a routine is invoked likeabs(x). However, becauseabs is a member in a structure,
it must be accessed like other members, using member selection: x.abs(). This form of routine call is one of the first
peculiarities of objects, and has been used already with fileobjects, e.g.,cin.eof(). The next question is why does
abs have no arguments in the call; where doesabs get a parameter to calculate a result? The answer is the implicit
parameter;abs can make references to variablesre andim by virtue of the fact that it is nested in structurecomplex.
Hence, the callx.abs() is invoked in the context of objectx, so membersre andim of x are accessed inabs. This form
of supplying parameters to a routine is the second peculiarity of objects. Once these two peculiarities are mastered,
objects are straightforward to use and understand.) Edit file complex.C (Note the name change for the source file.)) Enter the following program:

#include <iostream> // Ex27
#include <cmath> // needed to use routine sqrt (square root)
using namespace std;
struct complex {

double re, im; // real and imaginary Cartesian coordinates
double abs() { return sqrt(re * re + im * im); }

};
int main() {

complex x = { 3.0, 5.2 }, y = { -9.1, 7.4 };
cout << "x:" << x.re << "+" << x.im << "i" << endl;
cout << "y:" << y.re << "+" << y.im << "i" << endl;
cout << "xd:" << x.abs() << endl;
cout << "yd:" << y.abs() << endl;

}) Compile and run the program.) Change routineabs to be:
double abs() { return sqrt(this ->re * this ->re + this ->im * this ->im); }) Compile and run the program.

The change toabs illustrates the hidden parameter to all routine members andthe fact that the type of the implicit
parameterthis is a pointer to the structure instance, requiring operator-> to access member values. Like Java, use of
the implicit parameterthis is seldom necessary in C++.

The typecomplex needs additional arithmetic operations, like addition:
struct complex {

double re, im;
double abs() { return sqrt(re * re + im * im); }
complex add(complex c) {

complex sum = { re + c.re, im + c.im };
return sum;

}
};

To sumx andy, write x.add(y). Because addition is a binary operation,add needs a parameter as well as the implicit
context in which it executes. Inadd, the members of the implicit operand,x, are added to the explicit ones of the
parameter,y, and a new complex value is returned.

17.1 ./ Operator Members

The previous syntax for addingcomplex values does not look like adding integer or floating-point values, where the
built-in operator+ is used. In C++, it is possible to use operator symbols for routine names:

C++ Tutorial 37

struct complex {
. . .
complex operator +(complex c) {

complex sum = { re + c.re, im + c.im };
return sum;

}
};

The addition routine is now called+, andx andy can be added byx.operator +(y) or y.operator +(x), which is only
slightly better. In fact, C++ also allows a call to an operator member to be written using infix notation, and rewrites this
notation back to member selection notation; thus,x + y is allowed and implicitly rewritten asx.operator +(y).) Edit file complex.C) Make the following modifications tocomplex andmain:

struct complex { // Ex28
double re, im;
double abs() { return sqrt(re * re + im * im); }
complex operator +(complex c) {

complex sum = { re + c.re, im + c.im };
return sum;

}
};
int main() {

complex x = { 3.0, 5.2 }, y = { -9.1, 7.4 };
cout << "x:" << x.re << "+" << x.im << "i" << endl;
cout << "y:" << y.re << "+" << y.im << "i" << endl;
complex sum = x + y;
cout << "sum:" << sum.re << "+" << sum.im << "i" << endl;

}) Compile and run the program.

17.2 Nesting

C++ supports syntactic nesting of object types, but unlike Javathe nesting does not imply scoping:
struct foo {

int g;
int r(. . .) { . . . }
struct bar { // nested object type

int s(. . .) { g = 3; r(. . .); } // references to g and r fail
};

};

In effect, C++ flattens structure scoping. As a result, the references in routines to membersg andr in foo fail because
there is no scope relationship between typesbar andfoo. Because nested syntax is allowed but there is no scoping, it
is discouraged except for controlling visibility for types(see Section23, p.55), such as:

struct foo {
enum Colour { R, G, B }; // nested type
. . .

};
foo::Colour colour = foo::R;

The enumerationColour is nested infoo to control visibility, and references to it outside the object must be qualified
with “ foo::”. Note, the new type operator “::” for the qualification. Unlike Java, the C++ selection operator “.”, e.g.,
foo.Colour, is inappropriate because it requires an object instance not a type.

17.3 Constructor

A constructoris a special member used to performinitialization after object allocation to ensure the object is in a
valid state before use. Constructors are called implicitlyat local declaration of a variable, dynamic allocation of a
variable, and creation of a parameter variable for a routinecall. Unlike Java, C++ does not initialize all object members

38 C++ Tutorial

to default values. When a C++ constructor executes, the constructor is responsible for all necessary initializing of it
members not already initialized via other constructors. Because a constructor is a routine, arbitrary execution can be
performed (e.g., loops, routine calls, etc.) to perform initialization.

Like Java, the name of a constructor is unusual because it is overloaded with the type name of the structure
in which it is defined. A constructor may have parameters but does not have a return type (not evenvoid). The
constructor without parameters is called thedefault constructor.

Java C++

class complex {
double re, im;
complex() { re = 0.; im = 0.; }
. . . // other fields and methods

};

struct complex {
double re, im;
complex() { re = 0.; im = 0.; } // default constructor
. . . // other members

};

When present, the default constructor is implicitly calledafter storage is allocated for a variable:
complex x;
complex *y = new complex; implicitly rewritten as

complex x; x.complex();
complex *y = new complex; y->complex();

When declaring a local object in C++, never put parenthesis to invoke the default constructor:
complex x(); // x is a routine taking no parameters and returning a complex

Once a constructor is specified, the old style structure initialization is disallowed:
complex x = { 3.2 }; // disallowed
complex y = { 3.2, 4.5 }; // disallowed

Like Java, this form of initialization is replaced using overloaded constructors with parameters:
struct complex {

double re, im;
complex() { re = 0.; im = 0.; }
complex(double r) { re = r; im = 0.; }
complex(double r, double i) { re = r; im = i; }
. . .

};

Unlike Java, constructor argument(s) can be specifiedafter a variable for local declarations:
complex x, y(1.0), z(6.1, 7.2);

implicitly rewritten as

complex x; x.complex();
complex y; y.complex(1.0);
complex z; z.complex(6.1, 7.2);

This syntax is used in Section12, p. 23 for declaring stream files, e.g.,ifstream infile("myinfile"). The more
familiar Java dynamic allocation is:

complex *x = new complex(); // parenthesis optional
complex *y = new complex(1.0);
complex *z = new complex(6.1, 7.2);

Unlike Java, a C++ constructor cannot be called explicitly at the start of another constructor, so constructor reuse must
be done through a separate member:

Java C++

class foo {
int i, j;

foo() { this (2); } // explicit constructor call
foo(int p) { i = p; j = 1; }

}

struct foo {
int i, j;
void common(int p) { i = p; j = 1; }
foo() { common(2); }
foo(int p) { common(p); }

};

17.3.1 Constant

Constructors can also be used to create object constants, likeg++ type-constructor constants in Section9.1, p.17:

C++ Tutorial 39

complex x, y, z;
x = complex(3.2); // create complex constant with value 3.2+0.0i
y = x + complex(1.3, 7.2); // create complex constant with value 1.3+7.2i
z = complex(2); // 2 widened to 2.0, create complex constant with value 2.0+0.0i

In fact, the previous operator+ for complex (see page37) has to be changed because type-constructor constants are
disallowed for a type with constructors; the change is to usea complex constructor to create the return value:

complex operator +(complex c) {
return complex(re + c.re, im + c.im); // use constructor to create new complex value

}

17.3.2 Conversion

By default, constructors are used to perform implicit conversions (see Section9.1, p.17):
int i;
double d;
complex x, y;
x = 3.2;
y = x + 1.3;
y = x + i;
y = x + d;

implicitly rewritten as

x = complex(3.2);
y = x.operator +(complex(1.3));
y = x.operator +(complex((double)i);
y = x.operator +(complex(d);

which is a powerful feature allowing built-in constants andtypes to interact seamlessly with user-defined types. Note,
two implicit conversions are performed on variablei in x + i: int to double and thendouble to complex. Implicit
conversion via a constructor is turned off by qualifying it with explicit :

struct complex {
. . .
explicit complex(double r) { re = r; im = 0.; } // turn off implicit conversions
explicit complex(double r, double i) { re = r; im = i; }
. . .

};

While implicit conversion allows built-in constants and types to be used directly with user defined types, it fails for
commutative binary operators. For example,3.2 + x, fails because it is conceptually rewritten as(3.0).operator +(x),
and there is no memberdouble operator +(complex) in the built-in typedouble . To solve this problem, the operator+
is moved out of the object type and made into a routine, which can also be called in infixed form:

struct complex { . . . }; // same as before, except operator + removed
complex operator +(complex a, complex b) { // 2 parameters

return complex(a.re + b.re, a.im + b.im);
}
x + y;
3.0 + x;
x + 3.0;

implicitly rewritten as

+(x, y)
+(complex(3.0), x)
+(x, complex(3.0))

The compiler first checks for an appropriate operator definedin the object, and if found, applies conversions only
on the second operand. If there is no appropriate operator inthe object type, the compiler checks for an appropriate
routine (it is ambiguous to have both), and if found, appliesapplicable conversions toboth operands. In general,
communicative binary operators should be written as routines to allow implicit conversion on both operands.

17.3.3 Copy

The constructor with aconst reference parameter to the object type, e.g.:
complex(const complex &c) { . . . }

is called thecopy constructor, and has special meaning for two important initialization contexts: declarations and
parameters. A declaration initialization:

complex y = x implicitly rewritten as complex y; y.complex(x); // copy constructor

The use of operator “=” in the declaration is misleading because it does not call the assignment operator but rather the
copy constructor. The value on the right-hand side of the assignment is the argument to the copy constructor.

Similarly, each parameter of a routine is initialized usingthe copy constructor. For example, given the declarations:

40 C++ Tutorial

complex foo(complex a, complex b);
complex x, y;

the callfoo(x, y) results in the following implicit action infoo:
complex foo(complex a, complex b) {

a.complex(x); b.complex(y); // initialize parameters with arguments

If a copy constructor is not specified, an implicit one is generated that copies all the values from its parameter into the
object, i.e., bit-wise copy.

Why does C++ differentiate between copy and assignment? Forthe copy situation (and constructors in general),
after allocation, an object’s members contain undefined values (unless a member has a constructor) and a constructor
initializes appropriate members. For assignment,lhs = rhs, the left-hand variable may contain values and assignment
only needs to copy a subset of values from the right-hand variable. For example, if an object type has a member variable
to count the number of assignments, the counter is set to zeroon initialization and incremented on assignment. In most
languages, assignment means copy all the “bits” from one variable to another, which is also the default behaviour in
C++; however, assignment in C++ can be redefined to selectively modify the “bits” (see Section24, p.56).

17.3.4 const Member

Unlike Java, a C/C++const member of a structure must be initialized at the declaration:
struct foo {

const int i; . . .
} x = { 3 }; // const member must be initialized because it is write-once/read-only

As mentioned, this form of initialization is disallowed forobjects, and must be replaced with a constructor:
struct foo {

const int i; . . .
foo() { i = 3; } // attempt to initialize const member

};

However, this fails because it is assignment not initialization, and aconst variable can only be initialized to ensure a
read does not occur before the initial write. Therefore, a special syntax is used for initializingconst members of an
objectbeforethe constructor is executed:

Java C++

class bar {}
class foo {

final int i;

final bar rp;
foo (bar b) {

i = 3;

rp = b;
. . .

}
}

class bar {};
class foo {

const int i;
bar * const p; // explicit const pointer
bar &rp; // implicit const reference
foo (bar b) : // syntax for initializing const members

i(3),
p(&b), // explicit referencing
rp(b) { // implicit referencing
. . .

}
};

In the example, memberi is initialized to 3, andp andr are initialized to point at argumentb, for the object’s lifetime.
In fact, this syntax can also be used to initialize non-const members.

17.4 Destructor

A destructor(finalize in Java) is a special member used to perform uninitialization at object deallocation,which is only
necessary if an object changes its environment, e.g., closing communication channels or files, freeing dynamically
allocated storage, etc. A self-contained object, like acomplex object, requires no destructor. (See Section24, p. 56
for a version ofcomplex requiring a destructor.) There is only one destructor for anobject type, and its name is the
character “~” followed by the type name (like a constructor), versus the keywordfinalize in Java; a destructor has no
parameters nor return type (not evenvoid):

C++ Tutorial 41

Java C++

class foo {
. . .
finalize() { . . . }

}

struct foo {
. . .
~foo() { . . . } // destructor

};

A destructor is invoked immediatelybeforean object is deallocated, either implicitly at the end of a block or
explicitly by adelete :

{
complex x, y;

complex *z = new complex;
. . .
delete z;
. . .

} // deallocate local storage

implicitly rewritten as

{
complex x; x.complex();
complex y; y.complex();
complex *z = new complex; z->complex();
. . .
z->~complex(); delete z;
. . .
y.~complex(); x.~complex();

}

For local variables in a block, destructors are called inreverseorder to constructors (independent of explicitdelete).
A destructor is more common in C++ than a finalize in Java due tothe lack of garbage collection in C++. If an object

type performs dynamic allocation of storage, it needs a destructor to free the storage:
struct foo {

int *i; // think int i[]
foo(int size) { i = new int [size]; } // allocate dynamic sized array
~foo() { delete [] i; } // must free storage
. . .

};

Also, a destructor in C++ is invoked at a deterministic time (block termination ordelete), ensuring prompt cleanup of
the execution environment. In Java, afinalize is invoked at a non-deterministic time during garbage collection ornot
at all, so cleanup of the execution environment is unknown.

18 ./ Forward Declaration

Most programming languages have the notion ofDeclaration Before Use(DBU), e.g., a variable declaration must
appear before its usage in a block:

{
i += 1; // no prior declaration of i
int i; // declaration after usage

}

While it is conceivable for a compiler to handle this situation, it makes other cases ambiguous:
int i;
{

i += 1; // now which i should be used?
int i; // declaration after usage

}

However, there are some cases where DBU can be allowed without causing ambiguity. C always requires DBU. C++
requires DBU in a block and among types but not within a type. Java only requires DBU in a block, but not for
declarations in or among classes.

A language with DBU has a fundamental problem specifyingmutually recursivereferencing:
void f() { // f calls g

g(); // g is not defined and being used
}
void g() { // g calls f

f(); // f is defined and can be used
}

42 C++ Tutorial

The problem is that the compiler cannot type-check the call to g in f to ensure the correct number and type of arguments
and that the return value is used correctly because the actual definition of g, specifying the necessary type-checking
information, occurs after the call. Clearly, interchanging the two routines does not solve the problem. The solution is
a forward declarationto introduce a routine’s type before its actual declaration:

int f(int i, double); // routine prototype: parameter names optional and no routine body
. . .
int f(int i, double d) { // type repeated and checked with the prototype

. . .
}

The prototype parameter names in C/C++ are optional (but usually specified for documentation reasons), and the actual
routine declaration repeats the routine type and the repeated type must match the prototype.) Edit file hello.C) Enter the following program:

#include <iostream> // Ex29
using namespace std;
void g(int i); // forward declaration with parameter name
void f(int i) {

cout << "f(" << i << ")" << endl;
if (i > 0) g(i - 1); // recursion
cout << "f(" << i << ")" << endl;

}
void g(int i) { // check for match with prototype

cout << "g(" << i << ")" << endl;
if (i > 0) f(i - 1); // recursion
cout << "g(" << i << ")" << endl;

}
int main () {

f(5);
cout << endl;
g(4);

}) Compile the program, run it, and check the output.) Remove the forward declaration forf.) Compile the program and read the message from the compiler.

Routine prototypes are also useful for organizing routinesin a source file, e.g., allowing themain routine to appear
first, and for separate compilation (see Section24, p.56):

void g(int); // forward declarations without parameter names
void f(int);
int main() { // appears first rather than last

f(5); // actual declarations later
g(4);

}
void g(int i) { . . . } // actual declarations
void f(int i) { . . . }

Like Java, C++ does not require DBU for mutually-recursive routines within a type:

struct T {
void f(int i) { . . . g(. . .); . . . } // g is not defined but it works!
void g(int i) { . . . f(. . .); . . . }

};) Edit file hello.C) Enter the following program:

C++ Tutorial 43

#include <iostream> // Ex30
using namespace std;
struct T {

void f(int i) {
cout << "f(" << i << ")" << endl;
if (i > 0) g(i - 1); // no forward declaration needed
cout << "f(" << i << ")" << endl;

}
void g(int i) {

cout << "g(" << i << ")" << endl;
if (i > 0) f(i - 1);
cout << "g(" << i << ")" << endl;

}
};
int main() {

T x;
x.f(5);
cout << endl;
x.g(4);

}) Compile the program, run it, and check the output.

Unlike Java, C++ requires a forward declaration for mutually-recursive declarations among types:

Java C++

class T1 {
final T2 t2;
T1(final T2 t2) { this .t2 = t2; }
void g(int i) { . . . t2.f(. . .) . . . }

}
class T2 {

final T1 t1
= new T1(this);

void f(int i) { . . . t1.g(. . .) . . . }
}

struct T2; // forward declaration, no body
struct T1 { // T1 referencing T2

T2 &t2; // know about T2 from forward
T1(T2 &t2) : t2(t2) {} // constructor initialize
void g(int i) { . . . t2.f(. . .); . . . } // FAILS!!!

};
struct T2 { // T2 referencing T1

T1 &t1;
T2() : t1(*this) {} // constructor initialize
void f(int i) { . . . t1.g(. . .); . . . }

};

The forward declaration ofT2 allows the declaration of variableT1::t2. Note, a forward declaration only introduces
the name of a type. Given just a type name, the only declarations possible are pointers/references to the type, which
only allocate storage for an address rather than an actual object. An actual object declaration and usage requires the
object’s size and members so storage can be allocated, initialized, and usages type-checked. As a result, the C++ usage
t2.f in T1::g fails because the information about typeT2’s members is defined later.) It is possible to change the declaration ofT2::t1 from T1 &t1 to T1 t1, i.e., from a reference to an actual object?

Java’s solution to this problem is to find the definition ofT2 to obtain needed information (not DBU). C++’s solution
involves forward declarations and a syntactic trick (DBU).First, a member containing the non-DBU reference is
replaced by a forward declaration:

struct T1 { // T1 referencing T2
. . . // as above
void g(int i); // forward

};

and second, a syntactic trick allows the actual member definition to be placedafter both types are defined:
void T1::g(int i) { . . . t2.f(. . .); . . . }

Now the compiler knows all the information about the types toverify usage inT1::g. Note, the trick use of qualified
namesT1::g to specify this is actually a member logically declared inT1 but physically located after the types (also
see Section24, p.56).) Edit file hello.C

44 C++ Tutorial) Enter the following program:
#include <iostream> // Ex31
using namespace std;
struct T2; // forward declaration, no body
struct T1 { // T1 referencing T2

T2 &t2; // know about T2 from forward
T1(T2 &t2) : t2(t2) {} // constructor initialize
void g(int i); // forward declaration

};
struct T2 { // T2 referencing T1

T1 t1;
T2() : t1(*this) {} // constructor initialize
void f(int i) {

cout << "T2::f(" << i << ")" << endl;
if (i > 0) t1.g(i - 1);
cout << "T2::f(" << i << ")" << endl;

}
};
void T1::g(int i) { // placed after both structure declarations

cout << "T1::g(" << i << ")" << endl;
if (i > 0) t2.f(i - 1);
cout << "T1::g(" << i << ")" << endl;

}
int main() {

T2 t2;
t2.f(5);
cout << endl;
T1 t1(t2);
t1.g(4);

}) Compile the program, run it, and check the output.

19 ./ Overloading

All programming languages have some form of overloading, where a name has multiple meanings in the same context.
Overloading is possible if the compiler can disambiguate among identical names based on some criteria; the criterion
normally used is type information. In general, overloadingis done on operations not variables, so each variable name
is distinct in a block but a routine name may have multiple meanings.

int i; // variable overloading disallowed
double i;
void r(int) {} // routine overloading allowed
void r(double) {}

For example, most built-in operators are overloaded to workwith both integral and floating-point operands, i.e., the+
operator is different for1 + 2 than for1.0 + 2.0. The power of overloading occurs when the type of a variable changes:
operations on the variable are implicitly reselected to thevariable’s new type, e.g., after changing a variable’s typefrom
int to double , all operations implicitly change from integral to floating-point.

Like Java, C++ overloads the built-in operators for the basic types and allows users to overload members in a type.
As well, C++ allows routines to be overloaded including operators, e.g.,operator + in Section17.3.2, p.39. The criteria
used to select among a name’s different meanings are the number and types of the parametersbut not the return type.

int r(int i, int j) { . . . } // overload name r three different ways
int r(double x, double y) { . . . }
int r(int k) { . . . }
r(1, 2); // invoke 1st r based on integer arguments
r(1.0, 2.0); // invoke 2nd r based on double arguments
r(3); // invoke 3rd r based on number of arguments) Edit file hello.C

C++ Tutorial 45) Enter the following program:
#include <iostream> // Ex32
using namespace std;
int abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }
int main () {

cout << abs(1) << " " << abs(-1) << endl;
cout << abs(1.1) << " " << abs(-1.1) << endl;

}) Compile the program, run it, and check the output.

Implicit conversions between arguments and parameters cancause problems with overloaded routines, e.g., given
the above overloaded declarations ofr, this call is ambiguous:

r(1, 2.0); // ambiguous, could be either 1st or 2nd r

because either argument can be converted to integer or double. Use an explicit cast to provide sufficient information
to disambiguate, e.g.,r(1, (int)2.0) or r((double)1, 2.0).

Notice there is overlap between overloading and default arguments when the parameters have the same type.

Overloading Default Argument

int r(int i, int j) { . . . }
int r(int i) { int j = 2; . . . }
r(3); // 2nd overloaded declaration of r

int r(int i, int j = 2) { . . . }

r(3); // default argument of 2

If the overloaded routine bodies are essentially the same, use a default argument, otherwise use overloaded routines.) Edit file hello.C) Enter the following program:
int r(int i) { } // Ex33
int r(int i, int j = 2) { }
int main() {

r(3);
}) Compile the program and explain the error message.

Another example of overloaded routines are the I/O operators<< and>> for user types:

ostream &operator <<(ostream &os, complex c) { return os << c.re << "+" << c.im << "i"; }
cout << "x:" << x; // implicitly rewritten as: <<(cout.operator<<(“x:”), x)

In this case, the compiler uses the<< operator in objectcout to first print a string value, but used the overloaded routine
<< to print the complex variablex. There is a standard convention for all I/O operators to takeand return a stream
reference to allow cascading with other stream operators.) Edit file complex.C) Make the following modifications:

#include <iostream> // Ex34
#include <cmath>
using namespace std;
struct complex {

double re, im;
double abs() { return sqrt(re * re + im * im); }
complex() { re = 0.; im = 0.; } // overloaded constructors
complex(double r) { re = r; im = 0.; }
complex(double r, double i) { re = r; im = i; }

};

46 C++ Tutorial

// overloaded routines
complex operator +(complex a, complex b) { return complex(a.re + b.re, a.im + b.im); }
ostream &operator <<(ostream &os, complex c) { return os << c.re << "+" << c.im << "i"; }
int main() {

complex x, y, z;
x = 3.2;
y = x + complex(1.3, 7.2);
z = y + x;
cout << "x:" << x << " y:" << y << " z:" << z << endl;

}) Compile the program, run it, and check the output.

20 Inheritance
The “oriented” part of object-oriented refers to an additional notion calledinheritance, which is useful for writing
general, reusable program components.

Java C++

class base { . . . }
class derived extends base { . . . }

struct base { . . . }
struct derived : public base { . . . };

Inheritance has two orthogonal sharing concepts: implementation and type; each is discussed separately.

20.1 Implementation Inheritance

Implementation inheritance allows one object to reuse existing declarations to build another object. One way to
understand this technique is to model it via explicit inclusion, e.g.:

Inheritance Inclusion

struct base {
int i;
int r(. . .) { . . . }
base() { . . . }

};
struct derived : public base { // implicit inclusion

int s(. . .) { i = 3; r(. . .); . . . }
derived() { . . . }

} d;
d.i = 3; // reference member in included member
d.r(. . .); // reference member in included member
d.s(. . .); // s can access i and r in included member

struct base {
int i;
int r(. . .) { . . . }
base() { . . . }

};
struct derived {

base b; // explicit inclusion
int s(. . .) { b.i = 3; b.r(. . .); . . . }
derived() { . . . }

} d;
d.b.i = 3;
d.b.r(. . .);
d.s(. . .)

In the example, object typederived states it is inheriting from abase object, via the “public base” clause. Inheritance
implicitly creates an anonymous object member and “opens” the scope of the anonymous member so that its members
are accessible without qualification, both inside and outside the inheriting object type. The inclusion analogy involves
explicit creation of an object member,b, to aid in the implementation.

For implementation inheritance to work, aderived declaration first implicitly creates an invisiblebase object in a
derived object, like the explicitly created member in the inclusionmodel, otherwise the implicit references tobase::i
andbase::r in derived::s would fail. As well, constructors and destructors must be invoked for all implicitly declared
objects in the inheritance hierarchy as would be done for an explicit member in the inclusion model.

derived d;
. . .

implicitly rewritten as

base b; // implicit, hidden declaration
derived d; b.base(); d.derived();
. . .
d.~derived();b.~base(); // reverse order of construction

In the case where the included object type has members with the same name as the including type, it works like
nested blocks: a name in the inner scope hides (overrides) a name at the outer scope (see Section8.3, p.7). However,
it is still possible to access these members by using “::” qualification (see Section17, p. 34) to specify the particular
nesting level that contains the member.

C++ Tutorial 47

Java C++

class base1 {
int i;

}
class base2 extends base1 {

int i;
}
class derived extends base2 {

int i;
void s() {

int i = 3;
this .i = 3;
((base1)this).i = 3; // super.i
((base2)this).i = 3;

}
}

struct base1 {
int i;

};
struct base2 : public base1 {

int i; // hides base1::i
};
struct derived : public base2 {

int i; // hides base2::i
void r() {

int i = 3; // hides derived::i
derived::i = 3; // this.i
base2::i = 3;
base2::base1::i = 3;

}
};) Edit file hello.C) Enter the following program:

#include <iostream> // Ex35
using namespace std;
struct base1 {

void r() { cout << "base1::r" << endl; }
};
struct base2 : public base1 {

void r() { cout << "base2::r" << endl; }
};
struct derived : public base2 {

void r() {
cout << "derived::r" << endl;
base2::r();
base2::base1::r();

}
};
int main() {

derived d;
d.r();

}) Compile the program, run it, check the output, and make sure you understand it.

Implementation inheritance is used to write reusable program components by composing a new object’s imple-
mentation from an existing object, making it possible to take advantage of previously written and tested code to
substantially reduce the time in composing and debugging a new object type. Unfortunately, having to inherit all of
the members is not always desirable; some members may be inappropriate for the new type. As a result, both the
inherited and inheriting object must be very similar to haveso much common code. (In general, routines provide
smaller units for reuse than entire objects.)

20.2 Type Inheritance

Type inheritance extends name equivalence (see Section8.6, p. 9) to allow routines to handle multiple types, called
polymorphism, e.g.:

struct foo { struct bar {
int i; int i;
double d; double d;

} f; } m;
void r(foo f) { . . . }
r(f); // valid call
r(m); // should also work

48 C++ Tutorial

Since typesfoo andbar are identical, instances of either type can work as arguments to routiner. Even if typebar
has more members at the end, routiner only accesses the common ones at the beginning as its parameter is typefoo.
However, Java and C++ both use name equivalence to compare types for equality; hence, the callr(m) fails even
thoughm is structurally identical tof. Type inheritance relaxes name equivalence by aliasing thederived name with
all of its base-type names:

struct foo { struct bar : public foo { // inheritance
int i; // no members
double d;

} f; } m;
void r(foo f) { . . . }
r(f); // valid call, derived name matches
r(m); // valid call because of inheritance, base name matches

For example, create a new typemycomplex that counts the number of timesabs is called for eachmycomplex
object. Use both implementation and type inheritance to simplify building typemycomplex.

struct mycomplex : public complex {
int cntCalls; // add
mycomplex() : cntCalls(0) {} // add
double abs() { cntCalls += 1; return complex::abs(); } // override, reuse complex’s abs routine
int calls() { return cntCalls; } // add

};

Derived typemycomplex uses all the implementation of the base typecomplex, adds new members, and overrides
abs to count each call. The power of type inheritance is the reuseof complex’s addition and output operation for
mycomplex values, which can be used because of the relaxed name equivalence provided by type inheritance between
argument and parameter.) Explain why the qualificationcomplex:: is necessary inmycomplex::abs.

Now variables of typecomplex are redeclared tomycomplex, and membercalls returns the current number of calls to
abs for anymycomplex object.) Edit file complex.C) Make the following modifications:

. . . // same as before until the end of the complex output operator
struct mycomplex : public complex { // Ex36

int cntCalls;
mycomplex() : cntCalls(0) {}
double abs() { cntCalls += 1; return complex::abs(); }
int calls() { return cntCalls; }

};
int main() {

mycomplex x, y, z;
cout << "x:" << x.abs() << " y:" << y.abs() << " z:" << z.abs() << endl;
cout << "x:" << x.calls() << " y:" << y.calls() << " z:" << z.calls() << endl;

}) Compile the program and run it.

While implementation inheritance provides reuseinsidethe object type, type inheritance provides reuseoutsidethe
object type by taking advantage of existing code that manipulates the base type. In other words, any routine that
manipulates the base type also manipulates the derived type.

However, the previous example can be used to illustrate two significant problems with type inheritance. The first
problem is illustrated by:) Edit file complex.C) Make the following modification to routinemain:

int main() { // Ex37
mycomplex x;
x = x + x;

}

C++ Tutorial 49) Compile the program and read the message from the compiler.

Like the previous example, thecomplex routineoperator + is used to add themycomplex values because of the relaxed
name equivalence provided by type inheritance. However, the result type fromoperator + is complex, notmycomplex.
Now, it is impossible to assign acomplex (base type) tomycomplex (derived type) because thecomplex value is
missing thecntCalls member! In other words, amycomplex can mimic acomplex but not vice versa. This fundamental
problem of type inheritance is calledcontra-variance; C++ provides various solutions, all of which have problemsand
are beyond the level of this tutorial.

The second problem is illustrated by:) Edit file complex.C) Make the following modifications:
. . . // same as before until the end of the declaration of mycomplex
void r(complex &c) { c.abs(); } // Ex38
int main() {

mycomplex x;
x.abs(); // direct call of abs
r(x); // indirect call of abs
cout << "x:" << x.calls() << endl;

}) Compile the program, run it, and check the output.

While there are two calls toabs on objectx, only one is counted. This peculiarity is resolved next.

20.3 ./ Virtual Routine

In general, when a member is called, it is obvious which one isinvoked even with overriding, e.g.:

struct base {
void r() { . . . }

};
struct derived : public base {

void r() { . . . } // override base::r
};
base b;
b.r(); // call base::r
derived d;
d.r(); // call derived::r

However, it is not obvious for arguments/parameters and pointers/references:

void s(base &b) { b.r(); }
s(d); // call allowed because of inheritance; does s call base::r or derived::r ?
base &bp = d; // assignment allowed because of inheritance
bp.r(); // call base::r or derived::r ?

In essence, inheritance masks the actual type of the object,but both calls should invokederived::r because argument
b and referencebp currently pointing at an object of typederived; likewise, if variabled is replaced withb, the calls
should invokebase::r. However, there are situations where a programmer may want to access members inbase even
if the actual object is of typederived. Notice, this is never a problem becausederived containsa base.

To handle both cases, C++ provides a facility to specify the default form for a member routine call, and to override
the default at the call site. To set the call default to invokethe routine defined in the referenced object, qualify the
member routine withvirtual . To set the call default to invoke the routine defined by the type of the pointer/reference,
do not qualify the member routine withvirtual . C++ uses non-virtual as the default because it is more efficient. Java
sets the call default to virtual for all calls to objects, anddoes not suppose the second form of object call. Finally, once
a base type qualifies a member as virtual,it is virtual in all derived types regardless of the derived type’s qualification
for that member. The following example shows how to accessall routine members in the base and derived type
regardless of how the routines are qualified:

50 C++ Tutorial

Java C++

class base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual

}
class derived extends base {

public void g() {} // virtual
public void h() {} // virtual

}
final base bp = new derived();
bp.f(); // base.f
((base)bp).g(); // derived.g
bp.g(); // derived.g
((base)bp).h(); // derived.h
bp.h(); // derived.h

struct base {
void f() {} // non-virtual
void g() {} // non-virtual
virtual void h() {} // virtual

};
struct derived : public base {

void g() {}; // non-virtual
void h() {}; // virtual

};
base &bp = *new derived(); // polymorphic assignment
bp.f(); // base::f, use pointer type
bp.g(); // base::g, use pointer type
((derived &)bp).g(); // derived::g, use pointer type
bp.base::h(); // base::h, explicit selection
bp.h(); // derived::h, use object type

Notice, casting in Java does not provide access to the base-type’s member routines.It is important to understand that
virtual members areonly necessary to access derived members through a base type reference or pointer.Therefore,
if a type is never involved in inheritance (final class in Java), it never needs virtual members, and hence, can take
advantage of more efficient calls to its members.

When a type is involved in inheritance, one problem with virtual members in C++ is that the qualification is made
in the base type as opposed to the derived type. Hence, C++ requires the base-type definer to look into the future and
guess how derived definers might want the call default to work. Therefore, like Java, good programming practice is
to make all routine members virtual for types involved in inheritance. Finally, any type with virtual members and
a destructor should make the destructor virtual, to ensure the most derived destructor is called through a base-type
pointer/reference.) Edit file complex.C.) Modify the program soall calls to memberabs are counted.

20.4 Down Cast

Type inheritance can mask the actual type of an object through a pointer/reference (see Section20.2, p. 47). Like
Java, C++ provides a mechanism to dynamically determine theactual type of a pointer/reference. The Java operator
instanceof and the C++ operatordynamic_cast perform a dynamic check of the object addressed by a pointer/reference:

Java C++

base bp = new derived();
if (bp instanceof derived)

((derived)bp).rtn();

base *bp = new derived();
if (dynamic_cast <derived *>(bp) != 0)

((derived *)bp)->rtn();

To usedynamic_cast on a type,the type must have at least one virtual member.

20.5 Constructor/Destructor

Like Java, C++ constructors areimplicitly executed top-down, from base to most derived type. This order is mandated
by the scope rules, which allow a derived-type constructor to use a base type’s variables so the base type must be
initialized first. Unlike Java, C++ destructors areimplicitly executed bottom-up, from most derived to base type.
Again, this order is mandated by the scope rules, which allowa derived-type constructor to use a base type’s variables
so the base type must be uninitialized last. Javafinalize must beexplicitlycalled from derived to base type.

Unlike Java, C++ disallows calls to other constructors at the start of a constructor (see Section17.3.4, p. 40). To
pass arguments to other constructors, use the same syntax asfor initializing const members (see Section17.3.4, p.40).

C++ Tutorial 51

Java C++

class base {
base(int i) { . . . }

};
class derived extends base {

derived() { super(3); . . . }
derived(int i) { super(i); . . . }

};

struct base {
base(int i) { . . . } // requires argument

};
struct derived : public base {

derived() : base(3) { . . . } // argument for base type
derived(int i) : base(i) { . . . } // argument for base type

};) Edit file Hello.C.) Enter the following program:
#include <iostream> // Ex39
using namespace std;
struct base {

int i;
base(int i) { cout << "base, i:" << i << endl; }
~base() { cout << "~base" << endl; }

};
struct derived : public base {

derived() : base(3) { cout << "derived" << endl; }
derived(int i) : base(i) { cout << "derived, i:" << i << endl; }
~derived() { cout << "~derived" << endl; }

};
int main() {

base b(2); cout << "=====" << endl;
derived d1; cout << "=====" << endl;
derived d2(7); cout << "=====" << endl;

}) Compile the program, run it, check the output, and make sure you understand it.

20.6 Abstract Interface

Like Java, C++ supports a mechanism to create an abstract interface from which actual types can be defined:

Java C++

interface shape {
void move(int x, int y);

};
class circle implements shape {

public void move(int x, int y) {}
};

struct shape {
virtual void move(int x, int y) = 0; // strange initialization

};
struct circle : public shape {

void move(int x, int y) {} // must define this member
};

In the C++ example, note the strange initialization of member shape::move to 0, which actually means this member
mustbe defined by any derived type ofshape. Unlike Java, C++ allows the abstract interface to contain actual members,
which results in a combination of implementation inheritance and abstract description.

21 ./ Template
Inheritance handles reuse where types are organized into a hierarchy to extend name equivalence. There is another
kind of reuse for situations where there is no type hierarchyand types are not equivalent. For example, the overloaded
abs routines defined in Section19, p. 44both have identical code but different types.

int abs(int val) { return val >= 0 ? val : -val; }
double abs(double val) { return val >= 0 ? val : -val; }

Instead of duplicating the code, a different form of reuse isused. A template routine allows types to become compile-
time parameters (Java does not support template routines),e.g.:

template <typename T> T abs(T val) { return val >= 0 ? val : -val; }

The keywordtemplate introduces the type parameterT, which is subsequently used to declare the return and parameter
types forabs. Whenabs is used, e.g.,abs(-1.1), the compiler infers the typeT from the argument,-1.1, to bedouble ,

52 C++ Tutorial

and constructs a specificabs routine withT replaced bydouble .) Edit file hello.C) Enter the following program:
#include <iostream> // Ex40
using namespace std;
template <typename T> T abs(T val) { return val >= 0 ? val : -val; }
int main() {

cout << abs(1) << " " << abs(-1) << endl;
cout << abs(1.1) << " " << abs(-1.1) << endl;

}) Compile and run the program.

A template type is also possible, when a type has identical code but manipulates different types (Java does support
template types but using a different technique). For example, a stack data-structure, implemented using an array, has
common code to manipulate the array, but the type of the arrayelements varies.

template <typename T, int N = 10> struct Stack {
T elems[N]; // maximum N elements
int size;
Stack() { size = 0; }
void push(T e) { elems[size] = e; size += 1; } // use N to check for overflow
T pop() { size -= 1; return elems[size]; }

};

The type parameter,T, is used to declare the element type of the arrayelems, as well as return and parameter types of
the member routines. The integer parameter denotes the maximum stack size. For template types, the compiler cannot
infer the type parameter, so it is explicitly specified.

Stack<int , 20> si; // stack of int
Stack<double > sd; // stack of double
Stack< Stack<int > > ssi; // stack of stack of int
si.push(3);
sd.push(3.0);
ssi.push(si);
int i = si.pop();
double d = sd.pop();
si = ssi.pop();

Beware the syntax problem for nested template declaration,e.g.,Stack< Stack<int > >; there must be a space between
the two ending chevrons or>> is parsed asoperator >>.

Container types are a common use of templates. A container template forms a specific container type storing
programmer defined nodes. The C++ Standard Template Library(STL) provides different kinds of containers (vector,
stack, queue, list, deque, set, map). Figure2 shows the STLvector container as an alternative to C/C++ arrays (see
Section4, p. 13). Like a Java array,vector can be dynamically sized, has a member routine to obtain the size, has
subscript checking, and also supports assignment. The example in Figure2(a) is a conversion of the program to
read values and print them in reverse order on page28. The declaration of a vector may specify an initial size, e.g.,
vector<int > vals(size), like a dimension. While the size of a vector may increase (ordecrease) dynamically, it is more
efficient to dimension, when the size is known. At any time, itis possible to query a vector’s size, e.g.,vals.size(). The
subscript operator,[], and member “at” both perform subscripting of array elements; the difference isonly member
“ at” performs subscript checking.As well, one vector can be assigned to another, copying each element. The example
in Figure2(b) is a conversion of the program to initialize and print a matrix on page29. The declaration of a matrix
is a vector of vectors, e.g.,vector< vector<int > > m(5), which specifies 5 rows. Before values can be assigned into a
row, each row is dimensioned to the specific size,m[r].resize(4). All loop bounds are controlled by using the dynamic
size of the row or column.

Figure3 shows a list-container example. In general, list librariesare divided into two kinds: those that copy the
user nodes into the list and those that link the nodes directly into the list. The implication of copying is that the node
type must have a default and/or copy constructor so instances can be created without having to know arguments to
constructors. The C++ STL uses copying and requires a node type to have a default constructor. The implication of
linking is that the node type must inherit from a particular list type to ensure it has appropriate link members. Like the

C++ Tutorial 53

#include <iostream>
#include <vector>
using namespace std;
int main() {

int i, size;
cin >> size;
vector<int > vals(size); // think int vals[size]
for (i = 0; i < vals.size(); i += 1) {

cin >> vals.at(i); // think vals[i]
}
vector<int > v; // think: int v[]
v = vals; // array assignment
for (i = v.size() - 1; 0 <= i; i -= 1) {

cout << v.at(i) << " ";
}
cout << endl;

}

(a) Array (with subscript checking using memberat)

#include <iostream>
#include <vector>
using namespace std;
int main() {

vector< vector<int > > m(5); // 5 rows
for (int r = 0; r < m.size(); r += 1) {

m[r].resize(4); // 4 columns per row
for (int c = 0; c < m[r].size(); c += 1) {

m[r][c] = r+c; // or m.at(r).at(c)
}

}
for (int r = 0; r < m.size(); r += 1) {

for (int c = 0; c < m[r].size(); c += 1) {
cout << m[r][c] << ", ";

}
cout << endl;

}
}

(b) Matrix (with no subscript checking using operator[])

Figure 2: STL Vector Container

#include <iostream>
#include <list>
using namespace std;
struct node {

char c;
int i;
double d;
node() {} // must have a basic constructor to copy
node(char c, int i, double d) : c(c), i(i), d(d) {}

};
int main() {

list<node> top; // doubly linked list
for (int i = 0; i < 10; i += 1) { // create list nodes

node n(’a’+i, i, i+0.5); // node to be added
top.push_back(n); // copy node at end of list

}
list<node>::iterator ni; // iterator for doubly linked list
for (ni = top.begin(); ni != top.end(); ++ni) { // traverse list nodes

cout << "c:" << ni->c << " i:" << ni->i << " d:" << ni->d << endl;
}
cout << endl;
while (0 < top.size()) { // destroy list nodes

node n = top.front(); // copy node at front of list
top.erase(top.begin()); // remove first node
cout << "c:" << n.c << " i:" << n.i << " d:" << n.d << endl;

}
if (top.empty()) { // verify list nodes destroyed

cout << endl << "list is empty" << endl;
}

}

Figure 3: STL Doubly Linked-List Container

54 C++ Tutorial

Stack container-type, alist must specify the type of the list nodes, e.g.,list<node>.

An additional concept introduced by containers is theiterator, which is used to traverse a container without know-
ing how the container is implemented. The capabilities of aniterator depend on the kind of container, e.g., a singly
linked list only allows traversing the list unidirectionally while a doubly linked list allows bidirectional traversal. Each
container in the C++ STL provides an appropriate iterator asa nested object type (see the end of Section17, p. 34);
hence the declaration type of the iterator forlist<node> is list<node>::iterator.

In Figure3, the first loop initializes a node with values and callspush_back, which copies the node to the end
(back) of the list. (push_back can also be used withvector to incrementally extend a vector’s size.) The second loop
traverses the list using an iterator index,ni, starting at the beginning of the list and stepping through the list one node
at a time untilni is past the end of the list (end() is not the last node but past the end node). Note, iteratorni is like
a pointer to a node stored in the list so the node is accessed with operator->. As well, the operator “++” is used to
advance to the next node in the list. The final loop destroys the list by repeatedly erasing the first node from the list
until the number of nodes is zero.) The iterator operator “--” moves in the reverse direction to “++”, and the last node in a list is defined to be--end()

(one back from past the end). Write a loop to print the nodes inreverse order. (Stopping the loop is tricky.)

An alternate mechanism to iterate through a container is using the STL template-routinefor_each, which uses a
container’s iterator to traverse a data structure, applying an action to each node:

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) { cout << i << " "; } // print node
int main() {

list< int > int_ list;
vector< int > int_vec;
for (int i = 0; i < 10; i += 1) { // create lists

int_ list.push_back(i);
int_vec.push_back(i);

}
for_each(int_ list.begin(), int_ list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

The action routine tofor_each is called for each node in the container, passing the node to the routine for processing.
In general, the type of the action routine isvoid rtn(T), whereT is the type of the container node. In this example,
print must have anint parameter matching the type of the node in each container.

If a more complex action is necessary, it can be constructed by a “function object”, called afunctor, using the
routine-call operator. For example, to have an action routine that prints values on a specified stream, a type is created
to store the stream, andoperator () is defined to allow the object to behave like a function:

struct print {
ostream &stream; // stream used for output
print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i << " "; }

};
int main() {

list< int > int_ list;
vector< int > int_vec;
. . .
for_each(int_ list.begin(), int_ list.end(), print(cout)); // print on different streams
for_each(int_vec.begin(), int_vec.end(), print(cerr));

}

The expressionprint(cout) creates a constantprint object, andfor_each callsoperator ()(node) in the object.

C++ Tutorial 55

22 Namespace

Like Java, C++ has a mechanism to organize complex programs and libraries composed of multiple types and declara-
tions. For example, this tutorial relies on namespacestd, containing all the I/O declarations and container types. The
names in a namespace form a declaration region, like the scope of block. Unlike Java, C++ allows multiple namespaces
to be defined in a file; types and declarations do not have to be added consecutively.

Java source file C++ source file

package foo; // one package / file
// types / declarations

namespace foo {
// types / declarations

};
namespace bar {

// types / declarations
};
namespace foo {

// more types / declarations
};

Like Java, the contents of a namespace can be accessed using full-qualified names:

Java C++

foo.T t = new foo.T(); foo::T *t = new foo::T();

or by importing individual items or all of the namespace content.

Java C++

import foo.T;
import foo.*;

using foo::T; // import individual
using namespace foo; // import all

23 Encapsulation

Abstraction is the separation of interface and implementation, which allows an object’s implementation to change
without affecting usage. Abstraction is essential for reuse and maintenance. For example, thecomplex type provides
an interface that does not require a user to directly access the implementation to perform operations, e.g.:

struct complex {
double re, im; // implementation data
. . . // interface routine members

};

so the implementation can change from Cartesian to polar coordinates, while the user interface remains constant.
Developing good interfaces for objects is the skill of abstraction.

Encapsulationis hiding the implementation for security or financial reasons, calledaccess control. Encapsulation
is neither essential nor required to develop software, assuming users follow a convention of not directly accessing
the implementation; however, relying on users to follow conventions is dangerous. Encapsulation is provided by a
combination of C and C++ features. C features work largely among source files, and are indirectly tied into separate
compilation (see Section24). C++ features work both within and among source files.

Like Java, C++ provides 3 levels of visibility control for object types:

Java C++

class foo {
private . . .
. . .
protected . . .
. . .
public . . .
. . .

};

struct foo {
private : // visible within and to friends

// private members
protected : // visible within, to friends and inherited types

// protected members
public : // visible within, to friends, inherited types and users

// public members
};

Java requires encapsulation specification for each member,while C++ groups members with the same encapsulation,
i.e., all members after a label,private , protected or public , have that visibility. Visibility labels can occur in any order

56 C++ Tutorial

and multiple times in an object type. Only the object type canaccess the private members, so the implementation
members are normally private. Inherited object types can access and modify public and protected members, which
may allow access to some of an object’s implementation. The public members define an object type’s interface, i.e.,
what a user can access. A user can still see private and protected parts but cannot access them, and therefore, cannot
write code that depends on or violates the abstraction. For astruct , the labelpublic is implicitly inserted at the
beginning of the structure, i.e., the default is that all members are public. C++ provides another kind of structure called
a class , which is the same asstruct , except the default is that all members are private.) Edit file hello.C) Enter the following program:

class base { // Ex41
private :

int x;
protected :

int y;
public :

int z;
};
class derived : public base {

public :
derived() { x; y; z; };

};
int main() {

derived d;
d.x; d.y; d.z;

}) Compile the program, removing invalid references, until there is successful compilation.

Encapsulation introduces a new problem for routines used toimplement binary operations for an object: a rou-
tine may need to access an object’s implementation, but it istreated the same as a user routine so it cannot access
private members. To solve this problem, C++ provides a mechanism to state that a routine is allowed access to its
implementation, calledfriendship(similar to package visibility in Java).

class complex {
friend complex operator +(complex a, complex b); // prototype of friend routine
. . .

};
complex operator +(complex a, complex b) { . . . }

The friend prototype indicates the routine with the specified name and type may access this object’s implementation,
i.e., the routine is in the set of private members for the object. Thus, an encapsulatedcomplex type looks like:

class complex {
friend complex operator +(complex a, complex b);
friend ostream &operator <<(ostream &os, complex c);
double re, im;

public :
double abs() { return sqrt(re * re + im * im); }
complex() { re = 0.; im = 0.; }
complex(double r) { re = r; im = 0.; }
complex(double r, double i) { re = r; im = i; }

};
complex operator +(complex a, complex b) { return complex(a.re + b.re, a.im + b.im); }
ostream &operator <<(ostream &os, complex c) { return os << c.re << "+" << c.im << "i"; }

24 ./ Separate Compilation

Like Java’s package access, a C/C++source fileprovides another mechanism for encapsulation. By default,all global
variables and routines in a source file are exported outside the file (package). To encapsulate declarations in a source
file, the declaration must be qualified withstatic .

C++ Tutorial 57

// file.C
int i; // public (exported)
void f(. . .) {} // public (exported)
static int j; // private
static void g(. . .) {} // private

Like Java, a type is encapsulated in a source file, unless explicitly denoted as public.
Unlike Java, which has automatic access to the public contents of a source file, C/C++ require the use of the

preprocessor (see Section11, p. 21) and forward declarations (see Section18, p. 41) to access public contents, which
is accomplished by dividing declarations into two parts, and into two (or more) files. Each declaration is divided into
its interface and implementation. The interface is usuallycomposed of the prototype declaration(s) (but possibly some
implementation), and the implementation is composed of theactual declarations and code. Second, the interface is
entered into one or more include files (.h files), and the implementation is entered into one or more source files (.C
files). Encapsulation is provided by giving a user access to only the include file(s) and the compiled source file(s),
which is sufficient to use an abstraction, but not the implementation in the source file(s). Most software supplied from
software vendors comes this way. Prototypes in the include files for exported variables and routines (not types) must
be qualified withextern to indicate the implementation appears elsewhere:

// file.h
extern int i; // public, implementation elsewhere
extern void f(. . .); // public, implementation elsewhere (extern optional for routines)

For example, thecomplex type can be divided into filecomplex.h, which users include in their programs, and file
complex.C (see Figure4). The .C file normally includes the.h file so that there is only one copy of the constants,
declarations, and prototype information. The variablecplxObjCnt is qualified withstatic to make it a private variable
to this source file, i.e., no user can access it, but each constructor in the source file can increment the counter when a
complex object is created.All static variables, whether in a class or file, must be explicitly initialized in the.C file. For
example, variablecplxObjCnt is set to0. The exported routinecomplexStats can be called by users at any time to print
the number ofcomplex objects created so far in a program. Notice, all the member routines ofcomplex are separated
into a forward declaration and an implementation after the object type, allowing the implementation to be placed in
the.C file (see Section18, p.41).

However, by reading the.h, it may be possible to determine the implementation technique used, so there is only
a partial level of encapsulation. It is possible to provide complete encapsulation in C/C++, using more expensive
references rather than values in the implementation (see Figure5, p. 59). Essentially, how much information goes
into .h file depends on the amount of encapsulation; but the amount ofencapsulation may affect the implementation.
Note, because the compiler requires a template definition for each usage, both the interface and implementation of a
template must be in a.h file, which precludes certain forms of encapsulation.

Notice the use of a copy constructor and assignment operatorin Figure5, p. 59 because complex objects now
contain a reference pointer to the implementation, and a reference pointer cannot be copied on initialization or assign-
ment without generating storage management problems. For example, copying the reference pointer can result in two
complex objects pointing at the same complex value and both may eventually attempt to delete it. As well, overwriting
a reference pointer may lose the only pointer to the storage so it can never be freed.

An encapsulated object is compiled using the-c compilation flag and subsequently linked with other compiled
source files to form a program:

g++ -c complex.C

which creates a file calledcomplex.o containing a compiled version of the source code.) Edit file complex.h) Enter the program in Figure4(a).) Edit file complex.C) Enter the program in Figure4(b).) Compile the program to create the executablecomplex.o.

To use an encapsulated object, a program specifies the necessary include file(s) to access the object’s interface, and
then links with any necessary executables.) Edit file hello.C) Enter the following program:

58 C++ Tutorial

#ifndef _ _COMPLEX_H_ _ // Ex42
#define _ _COMPLEX_H_ _ // protect against multiple inclusion
#include <iostream> // access: ostream
using std::ostream;
extern void complexStats();
class complex {

friend complex operator +(complex a, complex b);
friend ostream &operator <<(ostream &os, complex c);
double re, im; // exposed implementation

public :
complex();
complex(double r);
complex(double r, double i);
double abs();

};
extern complex operator +(complex a, complex b);
extern ostream &operator <<(ostream &os, complex c);
#endif // _ _COMPLEX_H_ _

(a)complex.h

#include "complex.h" // Ex43
#include <cmath> // access: sqrt
using namespace std;
// private declarations
static int cplxObjCnt = 0; // must be initialized
// interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
complex::complex() { re = 0.; im = 0.; cplxObjCnt += 1; }
complex::complex(double r) { re = r; im = 0.; cplxObjCnt += 1; }
complex::complex(double r, double i) { re = r; im = i; cplxObjCnt += 1; }
double complex::abs() { return sqrt(re * re + im * im); }
complex operator +(complex a, complex b) { return complex(a.re + b.re, a.im + b.im); }
ostream &operator <<(ostream &os, complex c) { return os << c.re << "+" << c.im << "i"; }

(b) complex.C

Figure 4: Partially Encapsulated Abstract Type

#include "complex.h"
#include <iostream>
using namespace std;
int main() {

complex x, y, z;
x = complex(3.2);
y = x + complex(1.3, 7.2);
z = complex(2);
cout << "x:" << x << " y:" << y << " z:" << z << endl;

}

Notice,iostream is included twice, once in this program and once incomplex.h, which is why each include file
needs to prevent multiple inclusions.) Compile the program with command:

g++ hello.C complex.o) Redo the last two work sections replacing the code incomplex.h andcomplex.C with the code from Figure5(a)
and Figure5(b), respectively.

C++ Tutorial 59

#ifndef _ _COMPLEX_H_ _ // Ex44
#define _ _COMPLEX_H_ _ // protect against multiple inclusion
#include <iostream> // access: ostream
using std::ostream;
extern void complexStats();
class complex {

friend complex operator +(complex a, complex b);
friend ostream &operator <<(ostream &os, complex c);
struct complexImpl; // hidden implementation, nested class
complexImpl &impl; // indirection to implementation

public :
complex();
complex(double r);
complex(double r, double i);
~complex();
complex(const complex &c); // copy constructor
complex &operator =(const complex &c); // assignment operator
double abs();

};
extern complex operator +(complex a, complex b);
extern ostream &operator <<(ostream &os, complex c);
#endif // _ _COMPLEX_H_ _

(a)complex.h

#include "complex.h" // Ex45
#include <cmath> // access: sqrt
using namespace std;
// private declarations
static int cplxObjCnt = 0;
struct complex::complexImpl { // actual implementation, nested class

double re, im;
};
// interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
complex::complex() : impl(*new complexImpl) { impl.re = 0.; impl.im = 0.; cplxObjCnt += 1; }
complex::complex(double r) : impl(*new complexImpl) { impl.re = r; impl.im = 0.; cplxObjCnt += 1; }
complex::complex(double r, double i) : impl(*new complexImpl) { impl.re = r; impl.im = i; cplxObjCnt += 1; }
complex::~complex() { delete &impl; }
complex::complex(const complex &c) : impl(*new complexImpl) {

impl.re = c.impl.re; impl.im = c.impl.im; cplxObjCnt += 1;
}
complex &complex::operator =(const complex &c) {

impl.re = c.impl.re; impl.im = c.impl.im; return *this ;
}
double complex::abs() { return sqrt(impl.re * impl.re + impl.im * impl.im); }
complex operator +(complex a, complex b) { return complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im); }
ostream &operator <<(ostream &os, complex c) { return os << c.impl.re << "+" << c.impl.im << "i"; }

(b) complex.C

Figure 5: Fully Encapsulated Abstract Type

60 C++ Tutorial

25 Acknowledgments

The following people made suggestions to improve the tutorial: Glen Ditchfield, Rob Holte, Caroline Kierstead, Steve
Mann, Richard Bilson and John-Paul Pretti.

A Pulling It All Together

/*******************
Words are read in and written out in reverse order. A word contains only alphabetic characters.
Command line syntax is:

./a.out [input-file [output-file]]

input-file is the optional name of the input file (defaults to cin). If output-file is specified,
the input file must also be specified. The output file defaults to cout if not specified.

Examples:
./a.out
./a.out inputfile
./a.out inputfile outputfile

*******************/

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <list>
using namespace std;

int main(int argc, char *argv[]) {
istream *infile = &cin; // pointer to input stream; default to cin
ostream *outfile = &cout; // pointer to output stream; default to cout

switch (argc) {
case 3:

outfile = new ofstream(argv[2]); // open the outfile file
if (outfile->bad()) {

cerr << "Error! Could not open output file \"" << argv[2] << "\"" << endl;
exit(-1); // TERMINATE!

} // if
// fall through to handle input file

case 2:
infile = new ifstream(argv[1]); // open the first input file
if (infile->bad()) {

cerr << "Error! Could not open input file \"" << argv[1] << "\"" << endl;
exit(-1); // TERMINATE!

} // if
break ;

case 1:
// use cin and cout
break ;

default : // too many arguments
cerr << "Usage: " << argv[0] << " [input-file [output-file]]" << endl;
exit(-1); // TERMINATE!

}

string line, alpha = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
list<string> words; // list of words in document

for (;;) { // scan lines from a file
getline(*infile, line); // read entire line, but not newline

if (infile->eof()) break ; // end-of-file ?
line += "\n"; // add newline character as sentinel character
for (;;) { // scan words off line

int posn = line.find_ first_of(alpha); // find position of 1st alphabetic character
if (posn == -1) break ; // any characters left ?

C++ Tutorial 61

line = line.substr(posn); // remove leading whitespace
posn = line.find_ first_not_of(alpha); // find position of 1st non-alphabetic character
string word = line.substr(0, posn); // extract word from start of line
words.push_back(word); // add word to end of list
line = line.substr(posn); // delete word from line

} // for
} // for

*outfile << "The words in reverse order:" << endl;

while (0 < words.size()) { // traverse list in reverse order

*outfile << *(--words.end()) << endl; // print last node
words.erase(--words.end()); // remove last node

} // whille

if (infile != &cin) delete infile; // do not delete cin
if (outfile != &cout) delete outfile; // do not delete cout

} // main

// Local Variables: //
// tab-width: 4 //
// End: //

62 C++ Tutorial

Index
!, 15
!=, 15, 32
"", 22
#, 6, 21
#define , 21
#elif , 23
#else , 23
#endif , 23
#if , 23
#ifdef , 23
#ifndef , 23
#include , 22), 4./, 4
&, 11, 15, 19, 21
&&, 15, 19, 21
&=, 15

*, 11, 15

*/, 5

*=, 15
+, 15, 32
++, 17, 54
+=, 15, 17
,, 15, 16, 18, 20, 21
-, 15
--, 17, 54
-=, 15
->, 15, 36
., 15
./, 5
.C, 4, 57
.c, 4
.c++, 4
.cc, 4
.cp, 4
.cpp, 4
.cxx, 4
.h, 22, 57
/, 15
\, 9
/*, 5
//, 5
/=, 15
::, 37, 43, 46, 55
;, 6
<, 15, 32
<<, 15, 16, 24, 45
<<=, 15
<=, 15, 32
<>, 22
=, 15, 32

==, 15, 32
>, 15, 32
>=, 15, 32
>>, 15, 16, 24, 45
>>=, 15
?:, 15, 19, 20
[], 28, 32, 52
%, 15
%=, 15
&, 11, 15
{ }, 18
^, 15
^=, 15
_, 7
|, 15, 19
|=, 15
~, 15

a.out, 4, 5, 33
abstraction,55
access control,55
aggregation,13, 29
alias,10, 14, 48
allocation

array,27
dynamic,26

array,27
heap,27

array,27
matrix,28
stack,27

argc, 33
argument,30
argv, 33
array,10, 13, 14, 17, 21, 24, 27, 28, 31, 33, 52

2-D, 28
deallocation,28
parameter,31

assignment,14–16, 40
address,11
array,13, 52
cascade,16
initializing, 7
operator,57
pointer,12

basic types,7, 9
bool , 7
char , 7
double , 7
float , 7
int , 7

C++ Tutorial 63

wchar_t , 7
block,6, 7, 14, 18

{ }, 18
bool , 7, 9
boolalpha, 26
boolean expression,18

false , 18
true , 18

break , 19, 21

cascade,16, 24, 26
case, 19
case-sensitive,7

lower-case,7
mixed case,7
upper-case,7

cast,15, 17, 45, 50
cerr, 24
char , 7–9
chevron,6, 15, 24, 45
cin, 24
class , 13, 56
clear, 25
comma expression,16, 18, 20, 21, 28
command-line option,4
comment,5, 6

*/, 5
/*, 5
//, 5
nesting,5
out,5, 23

compilation options,4
compiler,5

a.out, 4
debugging,4
g++, 4
options

-D, 22
-E, 4, 21
-O, 4, 7
-Wall, 4, 7
-c, 4, 57
-g, 4
-o, 4
-v, 22

separate compilation,23, 42
symbol table,4

compiling,4
conditional,18
conditional expression evaluation,19

&&, 19
?:, 19
partial evaluation,19
short-circuit,19

conditional inclusion,23
const , 8, 12, 22, 31, 34
constant,8, 9, 12, 14, 31, 34, 57

bool , 9
char , 9
designated,9
double , 9
escape sequence,9
initialization,14, 22
int , 9
parameter,31
pointer,12
string,9, 31
type constructor,14
undesignated,9
variable,8

construction,46
constructor,10, 37, 46, 50

const member,40
constant,38
copy,39
implicit conversion,39
passing arguments to other constructors,50
type,9

continue , 21
contra-variance,49
control structure,18

block,18
{ }, 18

conditional,18
conditional expression evaluation,19

&&, 19
?:, 19
partial evaluation,19
short-circuit,19

looping,18, 20
do , 20
for , 20
while , 20

selection,18
break , 19
case , 19
dangling else,19
default , 19
else , 18
if , 18
switch , 19, 34

short-circuit expression evaluation,19
transfer,18

conversion,17, 39
cast,15
explicit, 17, 24, 45, 50
implicit, 17, 18, 24, 30, 39, 45

64 C++ Tutorial

narrowing,17
widening,17

conversion of types,17, 50
copy constructor,39, 57
cout, 24

dangling else,19
dbx, 4
debugger,4

dbx, 4
gdb, 4

dec, 26
declaration,7

basic types,7
const , 22
type constructor,9
type qualifier,8
variable,7

Declaration Before Use,41, 42
default

parameter,45
default , 19
default constructor,38
default value,31, 38

parameter,31
default variable initialization,7
delete , 26

[], 28
deque, 52
dereference,11, 15
dereferencing,11
destruction,46

explicit, 41
implicit, 41
order,41

destructor,40, 46, 50
do , 20
documentation,5
double , 7, 9
down cast,50
dynamic storage management,26, 41
dynamic_cast , 50

eager evaluation,19
else , 18
encapsulation,55
end of file,25
end of line,6, 26
endl, 6, 26
enum , 10
enumeration,10, 13

nested,37
enumerator,10
equivalence

name,10, 13, 14
escape sequence,9
evaluation

eager,19
lazy,19
partial,19
short-circuit,19, 21

executable,5
execution,5

./, 5
a.out, 5

exit, 6
explicit conversion,17, 45
explicit inclusion,46
expression,15
extern , 57

fail, 24, 25
false , 18
file

.h, 22
opening,24

file inclusion,22
file suffix

.C, 4, 57

.c, 4

.c++, 4

.cc, 4

.cp, 4

.cpp, 4

.cxx, 4

.h, 57

.o, 57
find, 32
find_first_not_of, 32
find_first_of, 32
find_last_not_of, 32
find_last_of, 32
fixed, 26
float , 7
for , 20
for_each, 54
formatted I/O,24
forward declaration,42
free, 26
friend , 56
friendship,56
fstream, 24
function,29, 30
functor,54

g++, 4, 17, 22
garbage collection,26
gdb, 4

C++ Tutorial 65

goto , 21

heap,26
heap allocation,27
hex, 26

I/O
cerr, 24
cin, 24
clear, 25
cout, 24
fail, 24, 25
formatted,24
fstream, 24
ignore, 25
iomanip, 26
iostream, 24
manipulators,26

boolalpha, 26
dec, 26
endl, 26
fixed, 26
hex, 26
left, 26
noboolalpha, 26
noshowbase, 26
noskipws, 26
oct, 26
right, 26
scientific, 26
setfill, 26
setprecision, 26
setw, 26
showbase, 26
skipws, 26

identifier,7
if , 18

?:, 19
dangling else,19
else , 18

ignore, 25
implementation,57
implementation inheritance,46
implicit conversion,17, 18, 30, 39, 45
implicit parameter,36
inclusion

explicit, 46
indirection,11
inheritance,46

implementation,46
type,46, 47

initialization,14, 37–40, 46, 50, 57
array,14
forward declaration,43

string,14
structure,14

inline , 22
input,6, 23, 24

>>, 45
end of file,25
eof, 25
formatted,24
manipulators

iomanip, 26
noskipws, 26
skipws, 26

standard input
cin, 24

int , 7–9
interface,51, 56, 57
iomanip, 26
iostream, 6, 24
iteration statement

break , 21
continue , 21
goto , 21

iterator,52, 54
++, 54
--, 54
for_each, 54

keyword,7

language
preprocessor,6
programming,6
template,6

lazy evaluation,19
left, 26
list, 52, 54

iterator,54
push_back, 54

long , 8
looping statement,20

do , 20
for , 20
while , 20

macros,22
main, 6, 33, 42
malloc, 26
manipulators,26
map, 52
matrix,14, 16, 28, 31, 52
member,13

anonymous,46
const , 40
destruction,40, 46, 50

66 C++ Tutorial

initialization,37, 46, 50
operator,36
overloading,44
pure virtual,51
virtual,49, 50

mutually recursive,41–43

name equivalence,10, 13, 14, 47–49, 51
namespace,6

std, 6
narrowing conversion,17
nesting,7, 46

blocks,18
comments,5
initialization,14
preprocessor,23
routines,29
types,37

new , 26
noboolalpha, 26
noshowbase, 26
noskipws, 26
npos, 32
NULL, 14, 16, 23
null character,31
null pointer,11

object,34
anonymous member,46
const member,40
constants,38
constructor,37, 46, 50
copy constructor,39
default constructor,38
destructor,40, 46, 50
initialization,38, 50
pure virtual member,51
type

nesting,37, 54
virtual member,49, 50

object-oriented,4, 46
oct, 26
opening a file,24
operators

<<, 6

*, 11, 15
<<, 24, 45
>>, 24, 45
&, 11, 15
arithmetic,15
assignment,15
bit shift,15
bit-wise,15
cast,15

comma expression,15
control structures,15
logical,15
overloading,24, 36, 44
pointer,11, 15
priority, 15
relational,15
selection,37, 46, 55
string,32
struct , 15

selection,43
output,6, 23, 25

<<, 6
<<, 45
endl, 6
formatted,24
manipulators

boolalpha, 26
dec, 26
endl, 26
fixed, 26
hex, 26
iomanip, 26
left, 26
noboolalpha, 26
noshowbase, 26
oct, 26
right, 26
scientific, 26
setfill, 26
setprecision, 26
setw, 26
showbase, 26

standard error
cerr, 24

standard output
cout, 6, 24

overloading,16, 24, 36, 44
constructor,38

override,7, 46, 48, 49

parameter,30
array,31
constant,31
default value,31
implicit, 36

this , 36
pass by reference,30
pass by value,30
prototype,42

parameter passing,30
array,31

pass by reference,30
pass by value,30

C++ Tutorial 67

pointer,10, 14
0, 14
array,27
matrix,28
NULL, 14, 16, 23

polymorphism,47
preprocessor,5, 6, 21, 57

#define , 21
#elif , 23
#else , 23
#endif , 23
#if , 23
#ifdef , 23
#ifndef , 23
#include , 22
comment-out,5
file inclusion,22
macros,22
variable,22

priority, 15
private , 55
procedure,29, 30
program

compiling,4
execution,5
source file,4
structure,5

program structure,5
block,6
main, 6

programming style,4
protected , 55
prototype,41, 42, 57
public , 13, 55
pure virtual member,51

queue, 52

rand, 16
random number generator,16
reference,10, 11, 15

initialization,12
reference passing,30
referencing,11
replace, 32
reserved identifiers,7
return , 6, 30
return type,29
reuse,48
rfind, 32
right, 26
routine,29

argument/parameter passing,30
array parameter,31

function,30
member,34
parameter,29

pass by reference,30
pass by value,30

procedure,30
prototype,41
return , 30
return type,29
routine overloading,44
routine prototype

forward declaration,42
scope,34

routine prototype,42

scientific, 26
scope,34, 43, 55
segment fault,21
selection operator,37
selection statement,18

break , 19
case, 19
default , 19
else , 18
if , 18
switch , 19, 34

semicolon,6
separate compilation,23, 56

-c, 57
set, 52
setfill, 26
setprecision, 26
setw, 26
shell,5
shell arguments,33

argc, 33
argv, 33
main, 33

short , 8
short-circuit expression evaluation

&&, 19
showbase, 26
side-effect,16
signed , 8
sizeof , 16
skipws, 26
software development

.C, 57

.h, 57

.o, 57
separate compilation,56

-c, 57
source file,4, 29, 42, 55, 56
stack, 52

68 C++ Tutorial

stack allocation,27
standard output,6
Standard Template Library,52
standard template library,52
statement,6
static , 56
std, 6
stderr, 24
stdin, 24
stdout, 24
STL, 52
strcat, 32
strcpy, 32
strcspn, 32
stream

cerr, 24
cin, 24
clear, 25
cout, 24
fail, 24, 25
formatted,24
fstream, 24
ignore, 25
input,6

cin, 24
end of file,25
eof, 25
ifstream, 24

manipulators
boolalpha, 26
dec, 26
endl, 26
fixed, 26
hex, 26
iomanip, 26
left, 26
noboolalpha, 26
noshowbase, 26
noskipws, 26
oct, 26
right, 26
scientific, 26
setfill, 26
setprecision, 26
setw, 26
showbase, 26
skipws, 26

output,6
<<, 6
cout, 6
endl, 6
ofstream, 24

stream file,24

string,9, 31
C operations,32

[], 32
strcat, 32
strcpy, 32
strcspn, 32
strlen, 32
strncat, 32
strncpy, 32
strspn, 32
strstr, 32

C++ operations,32
!=, 32
+, 32
<, 32
<=, 32
=, 32
==, 32
>, 32
>=, 32
[], 32
find, 32
find_first_not_of, 32
find_first_of, 32
find_last_not_of, 32
find_last_of, 32
npos, 32
replace, 32
rfind, 32
substr, 32

constant,9
null termination,31

strlen, 32
strncat, 32
strncpy, 32
strspn, 32
strstr, 32
struct , 13
structure,10, 13, 14, 17, 34

member,13, 34
initialization,13

visibility
default,13
public , 13

struct , 15
substr, 32
switch , 19, 34

break , 19
case, 19
default , 19

symbol table,4

template,6, 51
routine,51

C++ Tutorial 69

type,52
this , 36
token,6
true , 18
type aliasing,10, 14
type constructor,9

aggregation,13
array,13
class,13
constant,14
enumeration,10, 13
pointer,10
reference,10
structure,13
type aliasing,14

type conversion,17, 39, 45, 50
type equivalence,47–49
type inheritance,46, 47
type qualifier,8, 12

const , 8, 12
extern , 57
long , 8
short , 8
signed , 8
static , 56
unsigned , 8

type-constructor constant
array,14
pointer,14
structure,14

typedef , 14

uninitialization,40
unsigned , 8

value passing,30
variable declarations

type qualifier,8
variables

address,11
constant,8
default initialization,7
dereference,11, 15
reference,11, 15

vector, 13, 52
[], 52
at, 52
iterator,52
push_back, 54
size, 52

virtual , 49, 50
virtual members,49–51
visibility

default,13

private , 55
protected , 55
public , 13, 55

void , 29

wchar_t , 7
while , 20
whitespace,5, 6, 24
widening conversion,17

	Title
	Contents
	Introduction
	Brief History of C/C++
	C/C++ Source File
	Compilation
	Execution
	Program Structure
	Comment
	Statement

	First Program
	Declaration
	Identifier
	Basic Types
	Variable Declaration
	Type Qualifier
	Constants
	Type Constructor
	Enumeration
	Pointer/Reference
	Aggregation (structure/array)
	Type Aliasing

	Type-Constructor Constant

	Expression
	Conversion

	Control Structure
	Block
	Conditional
	Selection
	Conditional Expression Evaluation
	Looping

	Preprocessor
	Substitution
	File Inclusion
	Conditional Inclusion

	Input/Output
	Input
	Output

	Dynamic Storage Management
	Routine
	Argument/Parameter Passing
	Array Parameter

	String
	Shell Argument
	Object
	Operator Members
	Nesting
	Constructor
	Constant
	Conversion
	Copy
	const Member

	Destructor

	Forward Declaration
	Overloading
	Inheritance
	Implementation Inheritance
	Type Inheritance
	Virtual Routine
	Down Cast
	Constructor/Destructor
	Abstract Interface

	Template
	Namespace
	Encapsulation
	Separate Compilation
	Acknowledgments
	Pulling It All Together
	Index

