Lab 2: Shell, Environment Variables, Useful
C-Shell Commands

1 Introduction
e main topics:

— what is shell, different shells,
— bourne shell, c-shell,
— path, environment variables,

— other useful commands.

e Useful links:

A good reference to UNIX providing basic facts from history, introduction
to its structure, shells and commands is at
http://wks.uts.ohio-state.edu/unix_course/

Other pages discussing different shells are:

— shell in general, bourne shell:
http://www.cc.vt.edu/cc/us/docs/unix/shells.html
http://www.ling.helsinki.fi/users/reriksso/unix/shell.html

— korn shell
http://www.kornshell.com /info/

— why not cshell:
http://www.cs.ruu.nl/wais/html/na-dir /unix-faq/shell /csh-whynot.html

2 UNIX, Kernel, Shell.

In UNIX, communication with the operating system is not direct. Instead,
UNIX commands are interpreted by a program called shell. Shell translates
the commands into actions that are taken by the operating system, the kernel.
Kernel interacts directly with the hardware and provides services to the user
programs.

As mentioned above, Shell is a program that allows the system to
understand user’s commands (a command interpreter) Shell is analogous
to command.com in DOS.

2.1 Purpose of Shell

e interactive use: system waits for the command at the UNIX prompt
and interprets it.

e customization of your UNIX session: shell defines variables control-
ling the behavior of user’s UNIX session.

e programming: shell allows to create programs called shell scripts.

2.2 Different Shells: which, when, why
e sh: the Bourne shell

— developed by Steven Bourne at AT&T Bell Laboratories
— most compact but also simplest shell

— very good features for controlling input and output, but not well
suited for an interactive user

— good choice for writing shell scripts

— default prompt is $
o csh: the C shell

— developed by Bill Joy at the University of California
— uses C type syntax

— input/output implementation is worse than in Bourne shell which
malkes it not very good for programming.

— has ajob control allowing to reattach a job running in the background
to the foreground.

— provides a history feature allowing modification and repetition of
previously executed commands

— 1is suitable for interactive use.

— the default prompt is %.
e ksh: the Korn shell

— designed and developed by David G. Korn at AT&T Bell Laboratories

— contains the best features of sh and csh, plus many new features of
its own

e bash: the "bourne again” shell

— originally written by Brian Fox of the Free Software Foundation,
current developer and maintainer is Chet Ramey of Case Western
Reserve University

— contains a number of enhancements over bourne shell, both for in-
teractive use and shell programming

e {csh: the extended version of ¢ shell

— 1is suitable for interactive use

— has the same features as c shell plus several additional user friendly
features: use of arrows to repeat previous commands, the first letters
can be completed into a unique file name by hitting the tabulator.

By default, U. of Waterloo user UNIX account is set up with c-shell, though
other shells are also available. For interactive use you can choose any shell you
wish. However, our labs will refer to c-shell (esh) and tc-shell (tesh) respectively
for interactive use. For programming purpose we will always use bourne shell

(sh).
2.3 Changing your shell
To check what shell you are using right now, type:

grep SUSER /elc/passwd
To change your shell, type

chsh

chsh shows first the current shell and then prompts for the new shell. Less
experienced users may choose tcsh instead. The shell will be changed perma-
nently in few hours after typing the tesh. For a temporary shell change type the
name of the shell on the command prompt.

For example, type

sh

to work in bourne shell immediately. The sh prompt,$, appears and you can
enter sh commands, say,

ls
cd cs241
mkdir lab2
pwd

Once finished, you may end the work and return to the previous shell using
CTRL-D.

Notice that most UNIX commands introduced till now are valid in all shells.
From now on, when discussing interactive use, we focus on c-shell or tc-shell
only. The valid syntax for korn shell or bourne shell can be found in UNIX in
a nutshell book.

Before discussing internal and external commands, we need to understand
the structure of the filesystem in UNIX.

2.4 The Tree Structure of the Filesystem and a Home
Directory

Files are organized into directories. A directory is a special kind of file that
list other files. A directory can contain any number of files and other directo-
ries. The directory at the top is called the ”root” and has a special name ”/”
("slash”)
(picture)

Log in leads in the directory created for you by the system administrator.
This directory is called your home directory. For example cs241 home directory
is:

Jufes24l.
/ is the root and "u’ stores home directories for all users. The current directory
can be changed to your home directory by typing

ed

with no pathname.

2.4.1 Current Directory, Absolute and Relative Pathname

Pathnames locate files in the UNIX filesystem. By default, UNIX looks for files
or directories starting from the current directory. For example, if the current
directory is /u/youruserid/cs241 then the UNIX command

a) ed al

will switch into /u/youruserid/cs241/al, if such a directory exists. Otherwise
it will print an error message. If /u/youruserid/cs241 is the current directory
then typing

b) more al/ql.txt

you ask UNIX to locate the file q1.txt within the directory /u/youruserid/cs241/al.
You can also type:

c) more Ju/youruserid/cs2{1/al/ql.txt

to view the same file.
Cases a) and b) use relative pathnames, case c¢) an absolute pathname.
Several abbreviations simplifying the work with pathnames exist:

. refers to the current directory
. refers to the parent directory

For example, if /u/myuserid/cs241/al is the working directory and ql.txt is
the file in al directory, then

more ql.txt
has the same effect as
more ./ql.txt

If the working directory is the same as above but you want to check the file
q0.txt in directory a0 without changing the current directory, type

more ../a0/q0.tzt .

In C shell, “is a shortcut to the home directory. For example, 7cs241/lab2
is equivalent to the absolute pathname /u/myuserid/cs241/lab2. “username
switches to the home directory corresponding to username.

It this sense, UNIX allows practically anything and it the user’s responsibil-
ity to set up permissions on his/her files in a way that the above features cannot
be misused.

In summary,
e the absolute pathname always starts with /

e the C shell turns = into an absolute pathname starting at the home
directory or at “username directory

e if the pathname does not begin with / or = (C shell) then the pathname
is relative to the current directory.

As we will see shortly, it is very important to understand the difference
between absolute and relative pathname.

2.5 Internal and External Commands

Internal commands, such as ed, are build into the shell. The shell interprets the
cd command and changes your current directory accordingly. External com-
mands are just external programs. Example of an external command is Is,

which is stored in the file /bin/ls.

A build-in command or a command containing an absolute pathname start-
ing with /, is executed by shell directly. Say, /bin/ls executes the program called
s located in the directory bin. If the command is neither build-in, nor specified
by an absolute pathname, shell looks in its search path first.

2.5.1 PATH
The search path is set up in the environment variable PATH. To see the content
of PATH, i.e. all pathnames available to shell, type echo $PATH

or

printenv PATH

After typing the above command, the search path will look like:
/bin:fusr/bin:/.software /local/.admin/bins/bin: usr/openwin/bin
where ’:” distinguishes between different pathnames. As mentioned before, the
shell seeks the program name in directories set in PATH. The PATH is searched
sequentially. For example, if PATH=/bin:/usr/bin:/... shell starts to look for
the program in /bin, then /usr/bin etc. At the moment the program is found,
it is executed. Presence of the /bin directory in the PATH is essential, for all
external UNIX commands are located there. By default, the current directory
is not in the PATH. It can be added to the PATH, but it is not recommended.

Why?

2.5.2 Changing PATH

Very often it will be necessary to add new directories into PATH. The command

for setting or changing the environment variable is setenv. To add, for example,
user’s ¢s241/al directory to the PATH, type: setenv PATHSHOME /cs241/al:$PATH
This will add ¢s241/al directory to the beginning, which means that the cs241/al
directory will be searched by shell first. Similarly one can add a directory to

the end of the list. Note, that HOMFE is another environment variable, which
defines user’s home directory.

3 A Simple Shell Script

Scripting languages are similar to batch files in DOS environment. A shell script
is a sequence of UNIX commands in a text (ASCII) file. The following sequence
of commands creates a script file named first with one UNIX command:

ed™ fes241/lab2
vi first
man -k shell | sort -u | more

(save and exit the file by pressing ESC :wq)
To execute it in bourne shell use:
sh first

For shell, first is not an executable program yet. To become one, the com-
mand

chmod a+x first must be executed. Now,

./first

executes the shell script as desired.
More complicated shell programs are discussed in lab3.

4 Accessing the Files and Security Issues.

The chmod command we used previously changes the access mode into a file. Tt
is used to change the permission for the owner and other users to read, modify
or execute the file. For example, if

ls -1
displays
—rwW—r————— 1 userid es241 82 Jun 30 17:11 temp
—rw—r————— 1 userid es241 304 Jul 14 10:48 first

drwzr—az——z 2 userid cs241 4096 May 15 17:23 labs

then the information about the files and their permissions is in the first
column.

Each line of the first column starts either with ’d’ or ’—’. ’d’ means that the
file is a directory, ’—’ denotes a regular file.

The next three characters describe the permission to the owner of the file.
'’ means file is readable, "w’ file can be modified (i.e. it is writable), "2’ file is
executable. Symbol -’ instead of "2’ means that the user has no permission to
execute the file, similarly for reading and modifying. The next three characters,
starting from fifth position, give the permission to a group including the owner.
Membership of userid in the group cs241 is specified in columns three and four
of the list. The last three characters of each line in column one describe the
permission to all other users.
For example to allow others to read your first script use:

chmod o+ first

To remove that permission type:
chmod o—r first.

5 Wildcards

Wildcards may by used to specify a group of files. Here is a list of some most
commonly used wildcards:

e 7 (question mark) matches any single character
example: To list all dlx files needed for assignment 1 use:

ls alq?.dlzx

e * (asterisk) matches zero or more characters
be careful, . has no special meaning (except for Is command) and
S0,

rm *

will remove everything without any warning or asking however, ’.’
sidered special for s command:

Example:

is con-

Is a*.tzt

e [character-list] matches any single character that appears in the list.
Example:
[ab] means either a or b
[a-z] means any character between a and z, inclusive
Is test[12345].tat
or
ls test[1-5].txt

NOTE: you will hear about regular expressions (REs) and their rules soon
in class, in assignments and in lab3. Be aware, that *,?, [] have a different
meaning in shell and in rules used by RE. You will need to know and use

both.

6 C Shell Quoting

It is important to know the meaning of different quotation characters in c shell.

e single quotes: = —> turn off special meaning of all characters until the
next single quote is found.
Example:

echo $PATH

echo $PATH’

echo Hey, what’s next? Mike’s #1 friend has $value.
(output: Hey, whats next? Mikes)
Everything after # is ignored, since # starts comment in shell

e double quotes: 7 —> work almost like single quotes, but double quoting
allows the char
$ (dollar sign),
¢ (back-quote),
\ (backslash)
to keep their special meaning.
Example:

echo "Hey, what’s next? Mike’s #1 friend has $value.”

e pair of back-quotes: ‘ does command substitution
Example: How to send an e-mail message to all the users logged on to
the system.
First use the command
who | cut -c1-8
which will list all users currently log in.
who | cut -¢1-8 | sort -u
will sort them in alphabetical order and will only display unique names
mail * who | cut -¢1-8 | sort -u‘
will send e-mail to all of them.
If you are not sure, how this command works (or you really do not want to
send an e-mail to everybody) replace mail command with echo command:

echo * who | cut -¢1-8 | sort -u’.

7 Standard Input and Output

7.1 Standart Input

Standart input is the source of information for a command. This is assumed
to be the keyboard unless input is redirected or piped from a file or another
command.

7.1.1 Redirecting Standard Input

To redirect the standard input for a command use the < (less than) character
followed by the name of the input file.

For example:
mail bill < memo

This redirects the standard input to the mail command so that it comes
from the file memo. The effect of this is to mail the contents of this file to the
user bill.

7.2 Standard Output

Standart output is the destination for information from a command. This is
assumed to be the terminal display unless output is redirected or piped to a file
or another command.

To redirect the standard output from a command use the > (greater than)
symbol followed by the name of the output file. If the file that you redirect
standard output to does not already exist it will be created.

For example:

grep Smith /etc/passwd > popular

This redirects the standard output from the grep command so that it goes
to the file popular. This file will contain all occurrences of the string Smith
found in the /etc/passwd file.

Note: Redirecting standard output to a file that already exists overwrites its
contents with the standard output.
You can append output to an existing file.

To append the standard output from a command to a file use >> (two
greater than) symbols followed by the file name. If the file does not exist it is
created. For example:

cat partl > chapt?2
cat part? >> chapt?

The first line creates a file called chapt2 with the same contents as partl.
The second reads the contents of part2 and appends them to the file chapt2.
The file chapt2 contains now the data from partl followed by the data from
part?2.

8 Other Useful C Shell Commands

e history
displays the list of previously used commands.
Type

10

history

to see last 100 commands used. For example, to repeat command 123 use:
1123

to repeat the previous command use:
"

For other options see UNIX in a nutshell book.

alias
will assign a name to the command. For example, if one wants to use dir
instead of Is then he/she must create an alias:

alias dir ls # but please, do learn UNIX

job control
CTRL-7Z

stops the execution of the program
jobs

lists all running or stopped jobs

kdl 1D

terminates specific process 1D

Example:

Suppose we have a program ./myprogram running. To stop it type
CTRL-7Z

To see what programs are running or stopped type

jobs

11

If you will see
[1] myprogram stopped
you can kill this process by

kill %1

e finger users

displays data about one or more users
Example:
finger youruserid

finger cs241
To change the information about yourself visible to everybody use:
chfn

and follow the instructions on the screen.

As mentioned above, the information can be viewed by anyone. Be thus sure
you only include the kind of information everybody can know.
You may also include additional information stored in the file .plan in your
home directory.
To create or change your .plan file type:
cd 4t this will switch into your home directory
vi .plan 4t opens the file
Hello (some message)

After saving the file try
finger youruserid

You will see the message: plan exists, but it is unreadable (on the screen)
because the file .plan is not world readable. To change the permission type:

chmod a+r .plan

Where ’a’ stands for ”all” = user 4+ group + other as explained earlier.

12

