
Lab 2: Shell, Environment Variables, UsefulC-Shell Commands1 Introdu
tion� main topi
s:{ what is shell, di�erent shells,{ bourne shell,
-shell,{ path, environment variables,{ other useful
ommands.� Useful links:A good referen
e to UNIX providing basi
 fa
ts from history, introdu
tionto its stru
ture, shells and
ommands is athttp://wks.uts.ohio-state.edu/unix
ourse/Other pages dis
ussing di�erent shells are:{ shell in general, bourne shell:http://www.

.vt.edu/

/us/do
s/unix/shells.htmlhttp://www.ling.helsinki.�/users/reriksso/unix/shell.html{ korn shellhttp://www.kornshell.
om/info/{ why not
shell:http://www.
s.ruu.nl/wais/html/na-dir/unix-faq/shell/
sh-whynot.html2 UNIX, Kernel, Shell.In UNIX,
ommuni
ation with the operating system is not dire
t. Instead,UNIX
ommands are interpreted by a program
alled shell. Shell translatesthe
ommands into a
tions that are taken by the operating system, the kernel.Kernel intera
ts dire
tly with the hardware and provides servi
es to the userprograms. 1

As mentioned above, Shell is a program that allows the system tounderstand user's
ommands (a
ommand interpreter) Shell is analogousto
ommand.
om in DOS.2.1 Purpose of Shell� intera
tive use: system waits for the
ommand at the UNIX promptand interprets it.�
ustomization of your UNIX session: shell de�nes variables
ontrol-ling the behavior of user's UNIX session.� programming: shell allows to
reate programs
alled shell s
ripts.2.2 Di�erent Shells: whi
h, when, why� sh: the Bourne shell{ developed by Steven Bourne at AT&T Bell Laboratories{ most
ompa
t but also simplest shell{ very good features for
ontrolling input and output, but not wellsuited for an intera
tive user{ good
hoi
e for writing shell s
ripts{ default prompt is $�
sh: the C shell{ developed by Bill Joy at the University of California{ uses C type syntax{ input/output implementation is worse than in Bourne shell whi
hmakes it not very good for programming.{ has a job
ontrol allowing to reatta
h a job running in the ba
kgroundto the foreground.{ provides a history feature allowing modi�
ation and repetition ofpreviously exe
uted
ommands{ is suitable for intera
tive use.{ the default prompt is %.� ksh: the Korn shell{ designed and developed by David G. Korn at AT&T Bell Laboratories{
ontains the best features of sh and
sh, plus many new features ofits own� bash: the "bourne again" shell 2

{ originally written by Brian Fox of the Free Software Foundation,
urrent developer and maintainer is Chet Ramey of Case WesternReserve University{
ontains a number of enhan
ements over bourne shell, both for in-tera
tive use and shell programming� t
sh: the extended version of
 shell{ is suitable for intera
tive use{ has the same features as
 shell plus several additional user friendlyfeatures: use of arrows to repeat previous
ommands, the �rst letters
an be
ompleted into a unique �le name by hitting the tabulator.By default, U. of Waterloo user UNIX a

ount is set up with
-shell, thoughother shells are also available. For intera
tive use you
an
hoose any shell youwish. However, our labs will refer to
-shell (
sh) and t
-shell (t
sh) respe
tivelyfor intera
tive use. For programming purpose we will always use bourne shell(sh).2.3 Changing your shellTo
he
k what shell you are using right now, type:grep $USER /et
/passwdTo
hange your shell, type
hsh
hsh shows �rst the
urrent shell and then prompts for the new shell. Lessexperien
ed users may
hoose t
sh instead. The shell will be
hanged perma-nently in few hours after typing the t
sh. For a temporary shell
hange type thename of the shell on the
ommand prompt.For example, typeshto work in bourne shell immediately. The sh prompt,$, appears and you
anenter sh
ommands, say,ls
d
s241mkdir lab2pwd 3

On
e �nished, you may end the work and return to the previous shell usingCTRL-D.Noti
e that most UNIX
ommands introdu
ed till now are valid in all shells.From now on, when dis
ussing intera
tive use, we fo
us on
-shell or t
-shellonly. The valid syntax for korn shell or bourne shell
an be found in UNIX ina nutshell book.Before dis
ussing internal and external
ommands, we need to understandthe stru
ture of the �lesystem in UNIX.2.4 The Tree Stru
ture of the Filesystem and a HomeDire
toryFiles are organized into dire
tories. A dire
tory is a spe
ial kind of �le thatlist other �les. A dire
tory
an
ontain any number of �les and other dire
to-ries. The dire
tory at the top is
alled the "root" and has a spe
ial name "/"("slash")(pi
ture)Log in leads in the dire
tory
reated for you by the system administrator.This dire
tory is
alled your home dire
tory. For example
s241 home dire
toryis: /u/
s241./ is the root and 'u' stores home dire
tories for all users. The
urrent dire
tory
an be
hanged to your home dire
tory by typing
dwith no pathname.2.4.1 Current Dire
tory, Absolute and Relative PathnamePathnames lo
ate �les in the UNIX �lesystem. By default, UNIX looks for �lesor dire
tories starting from the
urrent dire
tory. For example, if the
urrentdire
tory is /u/youruserid/
s241 then the UNIX
ommanda)
d a1will swit
h into /u/youruserid/
s241/a1, if su
h a dire
tory exists. Otherwiseit will print an error message. If /u/youruserid/
s241 is the
urrent dire
torythen typingb) more a1/q1.txtyou ask UNIX to lo
ate the �le q1.txt within the dire
tory /u/youruserid/
s241/a1.You
an also type:
) more /u/youruserid/
s241/a1/q1.txt4

to view the same �le.Cases a) and b) use relative pathnames,
ase
) an absolute pathname.Several abbreviations simplifying the work with pathnames exist:. refers to the
urrent dire
tory.. refers to the parent dire
toryFor example, if /u/myuserid/
s241/a1 is the working dire
tory and q1.txt isthe �le in a1 dire
tory, thenmore q1.txthas the same e�e
t asmore ./q1.txtIf the working dire
tory is the same as above but you want to
he
k the �leq0.txt in dire
tory a0 without
hanging the
urrent dire
tory, typemore ../a0/q0.txt .In C shell, ~is a short
ut to the home dire
tory. For example, ~/
s241/lab2is equivalent to the absolute pathname /u/myuserid/
s241/lab2. ~usernameswit
hes to the home dire
tory
orresponding to username.It this sense, UNIX allows pra
ti
ally anything and it the user's responsibil-ity to set up permissions on his/her �les in a way that the above features
annotbe misused.In summary,� the absolute pathname always starts with /� the C shell turns ~ into an absolute pathname starting at the homedire
tory or at ~username dire
tory� if the pathname does not begin with / or ~ (C shell) then the pathnameis relative to the
urrent dire
tory.As we will see shortly, it is very important to understand the di�eren
ebetween absolute and relative pathname.2.5 Internal and External CommandsInternal
ommands, su
h as
d, are build into the shell. The shell interprets the
d
ommand and
hanges your
urrent dire
tory a

ordingly. External
om-mands are just external programs. Example of an external
ommand is ls,whi
h is stored in the �le /bin/ls. 5

A build-in
ommand or a
ommand
ontaining an absolute pathname start-ing with /, is exe
uted by shell dire
tly. Say, /bin/ls exe
utes the program
alledls lo
ated in the dire
tory bin. If the
ommand is neither build-in, nor spe
i�edby an absolute pathname, shell looks in its sear
h path �rst.2.5.1 PATHThe sear
h path is set up in the environment variable PATH. To see the
ontentof PATH, i.e. all pathnames available to shell, type e
ho $PATHor printenv PATHAfter typing the above
ommand, the sear
h path will look like:/bin:/usr/bin:/.software/lo
al/.admin/bins/bin: usr/openwin/binwhere ':' distinguishes between di�erent pathnames. As mentioned before, theshell seeks the program name in dire
tories set in PATH. The PATH is sear
hedsequentially. For example, if PATH=/bin:/usr/bin:/... shell starts to look forthe program in /bin, then /usr/bin et
. At the moment the program is found,it is exe
uted. Presen
e of the /bin dire
tory in the PATH is essential, for allexternal UNIX
ommands are lo
ated there. By default, the
urrent dire
toryis not in the PATH. It
an be added to the PATH, but it is not re
ommended.Why?2.5.2 Changing PATHVery often it will be ne
essary to add new dire
tories into PATH. The
ommandfor setting or
hanging the environment variable is setenv. To add, for example,user's
s241/a1 dire
tory to the PATH, type: setenv PATH $HOME/
s241/a1:$PATHThis will add
s241/a1 dire
tory to the beginning, whi
h means that the
s241/a1dire
tory will be sear
hed by shell �rst. Similarly one
an add a dire
tory tothe end of the list. Note, that HOME is another environment variable, whi
hde�nes user's home dire
tory.3 A Simple Shell S
riptS
ripting languages are similar to bat
h �les in DOS environment. A shell s
riptis a sequen
e of UNIX
ommands in a text (ASCII) �le. The following sequen
eof
ommands
reates a s
ript �le named �rst with one UNIX
ommand:
d~/
s241/lab2vi �rstman -k shell j sort -u j more 6

(save and exit the �le by pressing ESC :wq)To exe
ute it in bourne shell use:sh �rstFor shell, �rst is not an exe
utable program yet. To be
ome one, the
om-mand
hmod a+x �rst must be exe
uted. Now,./�rstexe
utes the shell s
ript as desired.More
ompli
ated shell programs are dis
ussed in lab3.4 A

essing the Files and Se
urity Issues.The
hmod
ommand we used previously
hanges the a

ess mode into a �le. Itis used to
hange the permission for the owner and other users to read, modifyor exe
ute the �le. For example, ifls -ldisplays�rw�r����� 1 userid
s241 82 Jun 30 17:11 temp�rw�r����� 1 userid
s241 304 Jul 14 10:48 �rstdrwxr�x��x 2 userid
s241 4096 May 15 17:23 labsthen the information about the �les and their permissions is in the �rst
olumn.Ea
h line of the �rst
olumn starts either with 'd' or '�'. 'd' means that the�le is a dire
tory, '�' denotes a regular �le.The next three
hara
ters des
ribe the permission to the owner of the �le.'r' means �le is readable, 'w' �le
an be modi�ed (i.e. it is writable), 'x', �le isexe
utable. Symbol '�' instead of 'x' means that the user has no permission toexe
ute the �le, similarly for reading and modifying. The next three
hara
ters,starting from �fth position, give the permission to a group in
luding the owner.Membership of userid in the group
s241 is spe
i�ed in
olumns three and fourof the list. The last three
hara
ters of ea
h line in
olumn one des
ribe thepermission to all other users.For example to allow others to read your �rst s
ript use:
hmod o+r �rst 7

To remove that permission type:
hmod o�r �rst.5 Wild
ardsWild
ards may by used to spe
ify a group of �les. Here is a list of some most
ommonly used wild
ards:� ? (question mark) mat
hes any single
hara
terexample: To list all dlx �les needed for assignment 1 use:ls a1q?.dlx� * (asterisk) mat
hes zero or more
hara
tersbe
areful, . has no spe
ial meaning (ex
ept for ls
ommand) andso, rm *will remove everything without any warning or asking however, '.' is
on-sidered spe
ial for ls
ommand:Example:ls a*.txt� [
hara
ter-list℄ mat
hes any single
hara
ter that appears in the list.Example:[ab℄ means either a or b[a-z℄ means any
hara
ter between a and z, in
lusivels test[12345℄.txtor ls test[1-5℄.txtNOTE: you will hear about regular expressions (REs) and their rules soonin
lass, in assignments and in lab3. Be aware, that *,?, [℄ have a di�erentmeaning in shell and in rules used by RE. You will need to know and useboth.6 C Shell QuotingIt is important to know the meaning of di�erent quotation
hara
ters in
 shell.� single quotes: ' �> turn o� spe
ial meaning of all
hara
ters until thenext single quote is found.Example: 8

e
ho $PATHe
ho '$PATH'e
ho Hey, what's next? Mike's #1 friend has $value.(output: Hey, whats next? Mikes)Everything after # is ignored, sin
e # starts
omment in shell� double quotes: " �> work almost like single quotes, but double quotingallows the
har$ (dollar sign),` (ba
k-quote),n (ba
kslash)to keep their spe
ial meaning.Example:e
ho "Hey, what's next? Mike's #1 friend has $value."� pair of ba
k-quotes: ` does
ommand substitutionExample: How to send an e-mail message to all the users logged on tothe system.First use the
ommandwho j
ut -
1-8whi
h will list all users
urrently log in.who j
ut -
1-8 j sort -uwill sort them in alphabeti
al order and will only display unique namesmail ` who j
ut -
1-8 j sort -u`will send e-mail to all of them.If you are not sure, how this
ommandworks (or you really do not want tosend an e-mail to everybody) repla
e mail
ommand with e
ho
ommand:e
ho ` who j
ut -
1-8 j sort -u`.7 Standard Input and Output7.1 Standart InputStandart input is the sour
e of information for a
ommand. This is assumedto be the keyboard unless input is redire
ted or piped from a �le or another
ommand.7.1.1 Redire
ting Standard InputTo redire
t the standard input for a
ommand use the < (less than)
hara
terfollowed by the name of the input �le. 9

For example:mail bill < memoThis redire
ts the standard input to the mail
ommand so that it
omesfrom the �le memo. The e�e
t of this is to mail the
ontents of this �le to theuser bill.7.2 Standard OutputStandart output is the destination for information from a
ommand. This isassumed to be the terminal display unless output is redire
ted or piped to a �leor another
ommand.To redire
t the standard output from a
ommand use the > (greater than)symbol followed by the name of the output �le. If the �le that you redire
tstandard output to does not already exist it will be
reated.For example:grep Smith /et
/passwd > popularThis redire
ts the standard output from the grep
ommand so that it goesto the �le popular. This �le will
ontain all o

urren
es of the string Smithfound in the /et
/passwd �le.Note: Redire
ting standard output to a �le that already exists overwrites its
ontents with the standard output.You
an append output to an existing �le.To append the standard output from a
ommand to a �le use >> (twogreater than) symbols followed by the �le name. If the �le does not exist it is
reated. For example:
at part1 >
hapt2
at part2 >>
hapt2The �rst line
reates a �le
alled
hapt2 with the same
ontents as part1.The se
ond reads the
ontents of part2 and appends them to the �le
hapt2.The �le
hapt2
ontains now the data from part1 followed by the data frompart2.8 Other Useful C Shell Commands� historydisplays the list of previously used
ommands.Type 10

historyto see last 100
ommands used. For example, to repeat
ommand 123 use:!123to repeat the previous
ommand use:!!For other options see UNIX in a nutshell book.� aliaswill assign a name to the
ommand. For example, if one wants to use dirinstead of ls then he/she must
reate an alias:alias dir ls # but please, do learn UNIX� job
ontrolCTRL-Zstops the exe
ution of the programjobslists all running or stopped jobskill IDterminates spe
i�
 pro
ess IDExample:Suppose we have a program ./myprogram running. To stop it typeCTRL-ZTo see what programs are running or stopped typejobs 11

If you will see[1℄ myprogram stoppedyou
an kill this pro
ess bykill %1� �nger usersdisplays data about one or more usersExample:�nger youruserid�nger
s241To
hange the information about yourself visible to everybody use:
hfnand follow the instru
tions on the s
reen.As mentioned above, the information
an be viewed by anyone. Be thus sureyou only in
lude the kind of information everybody
an know.You may also in
lude additional information stored in the �le .plan in yourhome dire
tory.To
reate or
hange your .plan �le type:
d # this will swit
h into your home dire
toryvi .plan # opens the �leHello (some message)After saving the �le try�nger youruseridYou will see the message: plan exists, but it is unreadable (on the s
reen)be
ause the �le .plan is not world readable. To
hange the permission type:
hmod a+r .planWhere 'a' stands for "all" = user + group + other as explained earlier.12

