Lab 3: Regular expressions. Shell Script.

1 Introduction
e Topics:

— Regular expressions

* basic rules (see also course notes and UNIX in a nutshell, ch 6)
* {} in more details

* examples

— Use of REs in various UNIX applications:
* grep, egrep
* Vi,
* sed,

* emacs
— short shell script

* variables

* return value of each UNIX command
x if

x for

* case

2 Regular Expressions (RE)

RE is a way of describing a set of strings without having to list all the strings
in your set. RE contains instructions on how to match the pattern. This is
accomplished by using plain text and special tokens. A sample RE may look
like:
hello

This matches any bit of text which contain hello. It will not match "Hello”
in "Hello, world” since REs are case sensitive. REs may also contain tokens.
These tokens are used in place of other text. For example hel*o is a RE, where
*is a token. As we will see later, * means 0 or more repetitions of the previous
character. Our RE will match heo, as well as helo, hello or hellllllllo.



REs are used by many UNIX programs (grep, egrep, sed, perl, vi, emacs
etc.). Tokens may vary from program to program and you should refer to manual
for the program to see, which tokens are supported. However the following table
gives the basic rules used by most programs:

2.1 Rules for forming (basic) RE:

1. A non-special character is a RE matching that character.
Example:

a
6
%
Special characters are:
” period
Ty asterisk
" left square bracket
\7 backslash
ne caret
"§” dollar sign

Note: A special character used as "normal” must be preceded by a back-
slash.
Example:
Main\.m3
first\.java

2. If token A is RE and token B is RE, then token AB is also RE
Token AB is called a concatenation of REs A and B. RE first matches A then
B.

Example: RE c¢s matches the string ”cs” because it first matches ¢ and then s.

3. (A) matches anything that matches token A ( precedence re-
lations or grouping)

Notes:

e 7(” is not listed as a special character. As a result, in many UNIX ap-
plications, which support ”(” we have to use ”\(” to preserve its special
meaning.

e 7()” has also another meaning : it will store the pattern for later replay.

(see UNIX in a Nutshell)



4. A|B matches anything that matches token A or token B.
Example :
a) alb
b) (ab)|(cd).

Similarly as before, since | is not listed as a special character, \ is used to
preserve its special meaning. And so,
a) will be written as:a\|b

b) will be written as em \(ab\)\|\(cd\)

5. A*, where token A is a RE, matches zero or more repetition
of A

Example:

a* will match:
?” - an empty string
a - one repetition of a
aaaaaaa - more then one repetition of a etc.

w(ab)* will match:
w
wab
wababab etc.

6. *.’ (single period) matches any character except newline \n.
Example:
Main.m3 will match:
MainAm3
Main7m3 etc.

Recall, that if Main.m3 should be matched exactly, the appropriate RE has
to be written as Main\.m3.

[ab] - character classes
[ab] means (alb)
[abedefg] means(alble|d|e|flg)
Note, that a shortcut like [a—g] is admissible. In case, the character *—’ is really
one of the character in [], =’ has to be putted as first or last character in the
list. For example: [a—g—] will match a|b|c|d|e|flg]—.

Examples:
[A—Za—z][A— Za—2z0—9_]* matches any modula3 identifier or key-
word
[A—Z][A—Z]* matches any sequence of at least one capital letter

7. [(ab] inverted character classes



Examples: [ab] matches anything except [ab]
[a—¢] will match ¢ or u or z but not a or d.

8. "A - where A4 is a RE, matches anything that matches A, but
only if it occurs at the beginning of the line.

Example:
"[A—Z] matches any capital letter at the beginning of the line.

9. A$ matches anything that matches A but only if it occurs at
the end of a line

Example: The following RE finds all lines that contain only one word END,
perhaps with spaces before and after it:
7 «END x§”

Some additional rules not supported by all UNIX applications:

10. A+ matches one or more repetitions of A.
Note: A+ is the same as A A% and many UNIX applications do not support "+’
at all. Consult man pages of the particular application for what is or is not
supported.

11. A ? matches zero or one repetition of A
Note: ? is the same as (Ale)

Examples:
alp[1—4]\.tat test cases for the assignment 1
T.] any character but ’. at the beginning of the line.
Hlaeiou]llo second letter is a vowel
bugsx bug, bugs, bugssss

Multiple matches:
{n,m} must occur at least n times, but no more than m times.
{n, } at least n times
{ ,m} no more than m times
{n} exactly n times
* 0 or more times (same as {0, })
+ 1 or more times (same as {1, })
? 0 or 1 time (same as {0,1})
Examples:
quuxr = quta=qu{l, }z
qu|qua=qufr=qu{ 0,1}z
etc.



2.2 Programs Using Regular Expressions

Many UNIX programs and tools use Regular Expressions. In this sections we
mention grep, sed and vi. For a complete description refer to the UNIX in a

nutshell book.

2.2.1 Grep and Egrep

Grep and egrep are tools that search for patterns in files and find all lines con-
taining a particular string.
Format:

grep RE filename
(see UNTX in a nutschell and man grep for more detailed description)
Examples:

grep "youruserid” marks - prints all lines which contain ’you-
ruserid’ in the file 'marks’

grep "\+” classlist - prints all lines which contain a character "+’

grep "[PpJroced.*” *.java - prints all lines which contain Proced
or proced in all files with extension java.

Note the significant difference between '+’ as used in RE and ’x’ used in
shell. Since shell may be easily confused by '+’ or any other special character in
regular expression, it is always recommended to quote (by using ” or ””) RE.

2.2.2 RE in vi:

Another application which uses REs is the vi editor. For purpose of an exercise
we will create a file temp’ in the current directory. Open a file by typing:

vi temp
and enter the following two lines:

Tooting and froing

until tomorrow morning

Now suppose we want to search for a string starting with ’t’ and ending with

’ing’. The correct regular expression is: t.*ing
Switch into the command mode by pressing

ESC
and type

/t.*ing (ENTER). The cursor will point to the first character of
the longest match ’ting and froing’.
Press

/ ( ENTER) and the cursor will move to the next match: ’til
tomorrow morning'.

For more options refer to the UNIX in a nutshell book.



2.2.3 RE in sed:

SED means a Stream EDitor. SED does not change the file it edits. It takes data
from standard input or a file, transforms them and passes them into a standard
output. The UNIX command is sed and we will show only a few examples of
its application for finding or replacing a string in the given text. More detailed
description can be found in UNIX in a nutshell.

Assume that we want to replace all occurrences of t.*ing in temp with
HELLO. We can do so using:
cat temp | sed ’s/t.*ing/HELLO/qg’
or
sed ’s/t.*ing/HELLO/qg’ temp
Notice that the longest match is replaced.
Output goes to stdin.

3 The Shell Script

As mentioned in lab 2, scripting languages are similar to batch files in DOS but
are more powerful. They include variables, looping, conditional execution etc.
We already saw how to write a simple shell script, here we introduce variables,
conditional statements and loops. For a full description refer to the UNIX in a
nutshell book. There are also several courses available on the WEB. For exam-
ple a very nice introductory course in bourne shell can be found here:
http://www.emerson.emory.edu/services /unizhelpl.3/Pages/scrpt/

3.1 The Basics

A script should start with a line

#!/bin/sh
Normally, *# introduces a comment line in shell. However, #/! is a special
comment. It tells the shell that it is a script and should be run using the
program sh (bourne shell) in the bin directory. A script in korn shell will start
with the line

#!/bin/ksh

for example.

3.2 Variables

Shell variables work on the principle of ’variable substitution’. This is different
from nonscripting languages such as c+4. If you want to use the name of a
variable, type the name itself. If you want to substitute its value, type the dollar
sign § followed by name. In case the value of the variable contains spaces, we
have to use pair of double quotes (see the example below). To delimit name of



the variable one has to use curly braces {}, as shown in the example.

Example:
#! /bin/sh
class=cs2/1
longname="1 like cs241”

echo class #prints class

echo $class #prints cs241

echo $classroom #prints nothing

echo ${class}room #prints cs24 lroom
echo $longname #prints I like cs241

After execution the output will be:
class
cs241
cs241room

I like cs241

3.3 Command Line Parameters

When shell script is started, variables $0 to $9 are set to values of parameters
passed from the command line.

Example: Create a script file test.sh by using vi editor:
vi test.sh
#!/bin/sh
echo Parameter 1: $1
echo Parameter 2: $2

Save the file, allow execution by changing the permission and execute it with
two input parameters hello and world:
./test.sh hello world
The following output will be displayed:
Parameter 1: hello
Parameter 2: world

3.4 Conditional Statements
3.4.1 The if statement

A typical example of the if statement is:
if bin/testprg
then
echo return from the testprg is true



else
echo return from the testprg is false

fi

Every UNIX command returns on exit a value, which the shell can use. This
value is held in the read-only shell variable $7. The value 0 (zero) signifies suc-
cess; anything other than 0 (zero) signifies failure. In our example, if testprg
executes successfully, the return value is 0 and the line:
return from the testprg is true

is printed. In case the execution was not successful, the line
return from the testpryg is false

is printed.

The if statement is often used with the test program stored in /usr/bin di-
rectory. The test program has many parameters enabling it to check whether
strings are equal or different, if the file exists, and much more. The complete
description is in UNIX in a nutshell book. Sometimes the shorthand [ ] for the
test program is used.

Example: Test if the file test.sh exists:
if [ -f test.sh ]
then
echo file exists
else

echo file not found
Ji

Note the syntax of the test command: [ —f file |. The spaces after ’[” and
before °]” are necessary.

The general syntax of the ¢f statement is:

if test
then

commands (if condition is true)
else

commands (if condition is false)
fi

then, else and fi are shell reserved words and as such are only recognized
after a newline or ; (semicolon). The if construct must end with a fi statement.
if statements may be nested:
then ...
else if ...

fi



fi

The elif statement can be used as shorthand for an else if statement. For
example:
then ...
elif ...
Ji
Ji

3.4.2 The case statement

The case statement starts with the keyword ’case’ followed by the value to be
tested and the keyword ’in’. This is followed by series of options. Each value to
be tested is on a separate line with a closing parenthesis ’)’ after it. The code
which should be executed comes after the value. After that there should be a
line with double semi-colon ;;

The general syntax of the case statement is:
case value in
patternl) command(s)

12

pattern2) command(s)

1
patternN) command(s)

2]
esac

After all the commands are executed, the control is passed to the first state-
ment after the esac.
Several values can be matched in the same line. They must be separated
from each other by a | symbol. For example:
case value in
patternl|pattern2) command

ron

Patterns are checked for a match in the order in which they appear. A
command is always carried out after the first instance of a pattern.

3.4.3 The for statement

The for loop notation has the general form:
for var in list-of-words

do



commands
done

commands is a sequence of one or more commands separated by a newline
or ; (semicolon).
The reserved words do and done must be preceded by a newline or ; (semi-
colon). Small loops can be written on a single line. For example:
for var in list; do commands; done

This is a simple example of a for loop and a ’command substitution’:

for iin ‘s ¢
do

echo "the name of the file is $i”
done

In this example, the command Is is executed first, since it is used inside
back-quotes. Then the values are substituted to i and proper message is printed.
Suppose that the result of the Is command is:

first
test.sh
Then the output from the for loop is:
the name of the file is first
the name of the file is test.sh

For information on while loop and other useful commands used refer to the
UNIX in a nutshell book.

3.5 Briefly About Linux

Linux is a UNIX -like operating system designed for personal computers. It is
freely available on the WEB:

hitp://www.debian.org/

hitp://www.redhat.com/
You may also purchase an installation disk with software needed for all cs courses
in the Computer Club of UW or visit the book store.

Install Linux on your PC and enjoy!

10



