SE 101

Introduction to Methods of Software Engineering

http://www.student.cs.uwaterloo.ca/~se101

Prof. Joanne (Jo) Atlee DC 2337, x4871 jmatlee@se.uwaterloo.ca

Typical Software Practices

© Performance Management Company, 1992-1999. All Rights Reserved.

Square Wheels® is a registered servicemark of PMC.

www.SquareWheels.com_email:Scott@SquareWheels.com_864-292-8700

We can do better.

Agenda

- SE 101
- Professionalism
- Software Engineering

Course Personnel

Prof. Joanne (Jo) Atlee

DC 2337, x4871 jmatlee@se.uwaterloo.ca Office Hours: Mondays 4:00-5:30 Thursdays 12:30-1:30 or by appointment

Benoit Laroche - SE 101/WEEF TA

E2 1318 blaroche@student.cs.uwaterloo.ca

Catherine Moore - CS 133 Tutor

ce3moore@student.cs.uwaterloo.ca

Julie Vale - SE 101 graduate TA

jrvale@engmail.uwaterloo.ca

SE 101 Objectives

SE 101 is an engineering **concepts course** Course weight 0.25

- Software Engineering concepts
 to give you a sense of what software engineering,
 as a discipline, is all about
- Professional Engineering
 to give you a sense of what engineering, as a
 profession, is about.
- Technical writing, Grammar to improve your writing skills

- 1. Intro to Software Engineering
- 2. Inexact quantities
- 3. Error propagation
- 4. Floating-point numbers
- 5. Design process
- 6. Teamwork
- 7. Project planning
- 8. Decision making
- 9. Professional Engineering
- 10. Software quality
- **11.** Software safety
- 12. Intellectual property

- 1. Intro to Software Engineering
- 2. Inexact quantities
- 3. Error propagation
- 4. Floating-point numbers
- 5. Design process
- 6. Teamwork
- 7. Project planning
- 8. Decision making
- 9. Professional Engineering
- 10. Software quality
- **11.** Software safety
- 12. Intellectual property

Numerical precision

- 1. Intro to Software Engineering
- 2. Inexact quantities
- 3. Error propagation
- 4. Floating-point numbers
- 5. Design process
- 6. Teamwork
- 7. Project planning
- 8. Decision making
- 9. Professional Engineering
- 10. Software quality
- 11. Software safety
- **12.** Intellectual property

Numerical precision

- 1. Intro to Software Engineering
- 2. Inexact quantities
- 3. Error propagation
- 4. Floating-point numbers
- 5. Design process
- 6. Teamwork
- 7. Project planning
- 8. Decision making
- 9. Professional Engineering
- 10. Software quality
- 11. Software safety
- **12.** Intellectual property

Numerical precision

Professionalism

Software Engineering

SE 101 Labs

- Design project / Design report (Lego robots)
- Quizzes
- Videos
- Ethics workshop
- WHMIS

Course Deliverables

•	Web	reviews	(best 7	of 8)	10%
---	-----	---------	---------	-------	-----

In-lab quizzes	(3)	30%
----------------------------------	-----	-----

- Lab assignments20%
 - Technical memo
 - Scheduling
 - Ethics memo
- Design Report 40%

Web Reviews

Web-based reviews cover lecture material and assigned readings:

- Review last week's lecture material (if technical)
- Preview this week's lecture topic (if nontechnical)
 You read about traditional engineering concepts, so that we can use lecture time to discuss how these concepts apply to software engineering and to case studies.
- Cover grammar

Web Reviews

First review due by Monday Sept. 20, at 5:00 p.m.

- Introduction to Engineering IPE Ch. 1
- Punctuation Dupré Intro, 15, 23, 29, 80, 93, 139

Web reviews will be accessible over the Internet, via a link from the course Web page.

You can work on the Web reviews in pairs, but everyone must submit a review to receive credit.

If you have technical difficulties, **let us know ASAP.** The reviews are untimed. But you must complete each review by Monday at 5:00 p.m., no exceptions.

SE 101 Textbooks

- G. Andrews, J. Aplewich, R. Fraser, H. Ratz,
 Introduction to Professional Engineering,
 Fifth Edition, Faculty of Engineering,
 University of Waterloo, 2003
- Lyn Dupré, BUGS in Writing, Revised Edition, Addison-Wesley, 1998

Agenda

- SE 101
- Professionalism
- Software Engineering

Expectations

We expect you to

- Be respectful of others in lecture/lab; do not arrive late or make noise
- Read assigned text before lecture/lab
- Be respectful of the course personnel
- Come see us if you have a problem or complaint
 - don't whine
 - don't stew

Expectations

You can expect us to

- Be accessible and approachable
- Be respectful of you and your opinions
- Involve you in any major change in the course deliverables or marking scheme
- Listen to any constructive comments you have about the course and the program

You are Responsible

You are enrolled in a professional program, and we expect you to **behave professionally**.

- Hand in for personal credit only work done by you; properly acknowledge any help you receive.
- Do not disrupt others in class by arriving late or making noise.
- Get a medical certificate ahead of time, if you are going to miss a quiz, assignment, or exam for health reasons.

Academic Dishonesty

Cheating on exams includes using unauthorized aids or communicating in any way with others during an examination.

The penalty for cheating on a test or exam will range from suspension for one or more terms to expulsion from the university.

Academic Dishonesty

Cheating on assignments and projects includes copying another student's solution and submitting it as your own, allowing another student to copy your solution, collaborating excessively with another student or decompiling sample solutions.

Individual assignments must be worked through by yourself and written in your own words. Working out solutions in detail with someone else and submitting the work as your own is a violation of the Student Academic Discipline Policy.

University Rules and Policies

University Calendar

http://www.ucalendar.uwaterloo.ca

- Rules and policies specific to academic programs
- Co-op process
- Course descriptions

University Policies

http://www.adm.uwaterloo.ca/infosec/Policies/Policies num.htm

- Policy 71 Student Academic Discipline Policy
- Policy 70 Student Grievance Policy
- Policy 64 Use of Proprietary Computer Software
- others

You can Succeed

- Our admission standards are high: if you have been admitted, we believe that you have the capability to succeed in the program
- Attribution rates in Engineering are low compared to other institutions
- But you will need to work to succeed. Success will not come naturally, as it did in high school.

People to Know

- Classmates study groups
- Course TAs office hours
- SE TAs office hours, often are around
- Course professors office hours
- SE program officers academic advising
- Directors of First-Year Studies help sessions
- Counselling Services study skills courses

Agenda

- SE 101
- Professionalism
- Software Engineering

Software Engineering

Software Engineering is a systematic and disciplined approach to developing software.

It applies both computer science and engineering principles and practices to the creation, operation and maintenance of software systems.

SE = CS + Engineering

Computer Science + Engineering

- data management
- data transformations
- designs patterns
- algorithm paradigms
- programming languages
- human-computer interfaces

- disciplined processes
- scalable design principles
- design evaluation
- effective documentation
- coordinated teams
- non-functional metrics
 (performance, reliability, maintainability, ease of use)

Evolution of an Engineering Discipline

- Virtuosos and talented amateurs
- Intuition and brute force
- Haphazard progress
- Casual transmission
- Extravagant use of available materials
- Manufacture for use rather than for sale

- Skilled craftsmen
- Established procedure
- Pragmatic refinement
- Training in mechanics
- and supply of materials
- Manufacture for sale

- Educated professionals
- Analysis and theory
- Progress relies on science
- Educated professional class
- Economic concern for cost
 Enabling new applications through analysis
 - Market segmentation by product variety

Mary Shaw, "Prospects for an Engineering Discipline of Software", IEEE Software, November 1990

Example: Civil Engineering

Mary Shaw, "Prospects for an Engineering Discipline of Software", IEEE Software, November 1990

Example: Chemical Engineering

Mary Shaw, "Prospects for an Engineering Discipline of Software", IEEE Software, November 1990

Emergence of Software Engineering

1960s: data structures, algorithms

1990s: design patterns, architecture patterns

 $Mary\ Shaw,\ "Prospects\ for\ an\ Engineering\ Discipline\ of\ Software",\ IEEE\ Software,\ November\ 1990$

Summary

Software engineering is an emerging **engineering discipline**— despite the state of the current practice of software development.

- Systematic development processes
- Analysis and theory of designs
- Design patterns for recurring problems
- Professional societies, code of ethics

Readings

- For today's lecture:
 - IPE Ch. 1- An Introduction to Engineering
- For next week's lecture:
 - IPE Ch. 10, 11 Inexact quantities
- Web review due Monday Sept. 20, 5:00 p.m. on
 - IPE Ch. 1- An Introduction to Engineering
 - Dupré: Intro, 15, 23, 29, 80, 93, 139