Marking Scheme:

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>30</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>21</td>
<td>21</td>
<td>15</td>
<td>15</td>
<td>9</td>
<td>9</td>
<td>150</td>
</tr>
<tr>
<td>Score</td>
<td></td>
</tr>
<tr>
<td>Grader</td>
<td></td>
</tr>
</tbody>
</table>

Allowing 15 minutes to understand the problem on Pages 7 through 8 there are 135 minutes for 150 marks, roughly .9 minutes, or about 54 seconds, per mark; plan your time wisely!

It is suggested that you read through the entire exam first before answering any question, so that you know where to spend your time.

There should be sufficient space to write or draw your answers in the exam itself. If you need more paper, please request it from your proctor.

For your convenience, the last page has a duplicate of a diagram that you will need to answer several questions. You may tear this page out so that you can refer to its diagram without flipping pages.
Part I: General RE (30 marks ~ 27 minutes)

1. Some Easy Issues (30 marks ~ 27 minutes)

a. The implication of the unit of work “person-month” that makes the term itself a myth is that the unit implies the following graph:

and that _________ and _________ can be traded off. The main reason that they cannot be traded off is that _________ grows _________ with the number of people in a project, while _________ grows _________ with the number of people in the project.

b. Describe one kind of non-computer-related job for which the person-month is not a mythical unit of work.

c. For extra credit that makes up points lost elsewhere in exam, describe one kind of software-engineering-related job for which the person-month is not a mythical unit of work.
d. According to Brooks, adding __________ to a late project makes it even __________. Note that the answer in the first underline in Question d is the **same** as the answer in the first underline in Question e.

e. Burkinshaw, however observed that adding __________ to a project in progress has the potential advantage of adding to the project __________, which is a rare commodity among people working on the project.

f. A consequence of the person-month being a myth is that in COCOMO, the formula for total months of development time, \(D \), as a function of total person-months of effort, \(E \) is

\[
D = c \times E^d
\]

where \(d \) is (choose one by checking its blank line):

\[= .33 _____
\]

\[1.00 _____
\]

\[= 1.33 _____
\]

g. The claim borne out by several case studies is that the __________ one spends working out requirements the __________ the subsequent implementation phase costs.
Probably the biggest single factor contributing to this effect is that an error caught during implementation costs about ________ times to fix what the same error costs to fix if it is caught during the requirements phase. Also, an error caught during deployment or maintenance of a system costs about ________ times to fix what the same error costs to fix if it is caught during the requirements phase.

h. Krogstie, quoting Kano, identifies three kinds of requirements:

1. ________

2. ________

3. ________

Describe for each kind of requirements how meeting it contributes to the user’s satisfaction with the resulting system.

1.

2.

3.

Describe for each kind of requirements how failing meeting it contributes to the user’s dissatisfaction with the resulting system.
1.

2.

3.

i. Fill in the table to explain the distinction between a software (SW) system product and a program. In the “costs” column, express each unfilled-in cost as a function of the filled-in cost X of the program.

<table>
<thead>
<tr>
<th></th>
<th>written for whom</th>
<th>communicates with</th>
<th>costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>program</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SW system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>product</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW system product</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

j. Give three distinct reasons why we cannot estimate software development costs very well before we begin the development.

1.

2.

3.
k. The formula $D,S|R$ has been called “the ______________ argument” or “_______________”, one of the “V”s in “V&V”. (The last underline must be filled with a full word) In the formula, D is __________ __________, S is ____________, and R is __________.

We view the hardware and software as building a __________ that operates in the __________ through an __________ that is shared between the __________ and the __________.

S must be written using only concepts that appear in the __________, while R may be written using concepts that appear also in the __________.

The parts of the world that are outside the __________ and the __________ are considered to be irrelevant to the hardware and software being built. However, sometimes things in this part of the world surprise us by turning out to be __________ to the hardware and software that was built.
1. Inspection of a software development artifact is an effort to find as many potential

_________ as possible in the artifact. The determination of whether a potential

_________ is an _________ _________, and the correction of any

_________ _________ is left to be done by the _________ of the artifact

_________ the inspection is finished.

Thus, inspection of an artifact is essentially a brainstorm for _________

_________ in the artifact, followed by having the _________ of the

_________ prune the list of _________ _________ to a smaller list of

_________ _________ that the _________ of the _________ must

_________.

m. The main difficulties with ranking a list of \(n \) requirements into a list totally ordered by priority are that:

1. _________ pairs of _________ have to be compared by _________.

2. It can be difficult to decide which of any two requirements has _________ over the other.
Triaging divides requirements into __________ groups, which are:

________________________ (Use as many lines as you need to be consistent)

________________________ with the number you have given above!

________________________ (It is possible that some lines are left blank!)

Triaging is derived from a procedure used in hospital emergency rooms to deal with many simultaneous medical __________ caused perhaps by a public __________.

In this triaging, patients are divided into __________ groups, those patients that will

________________________ (Use as many lines as you need to be consistent)

________________________ with the number you have given above!

According to David Platt, the main reason that software sucks is that the developers, who are programmers, develop software on the assumption that the typical thinks like think. Therefore, David Platt’s first, last, and only law of user interface design, addressed to developers is:

“Know Thy , for He Is Not .”
2. Initially, the revolving door is locked so that no one can go through it in either direction.

3. To go through the revolving door from the employee side to the public side, it suffices for a user, called an EmployeeSideUser, to simply push the handle bar on the door on her side. 4. After a very slight delay, the two lights are turned on and the door is unlocked. 5. If a user on either side pushes his or her handle bar within ten seconds, the lights are turned off and the door remains unlocked until the door finishes rotating 180° and whoever has pushed on either side has walked through. 6. Then, immediately the door is locked.

7. To go through the revolving door from the public side to the employee side, a user, called a PublicSideUser, must have a valid company id badge. 8. He must place either side of the id badge up against the badge plate on his side of the wall to the right of the door. 9. If the badge is determined to be valid, the two lights are turned on and the door is unlocked. 10. If a user on either side pushes his or her handle bar within ten seconds, the lights are turned off and the door remains unlocked until the door finishes rotating 180° and whoever has pushed on either side has walked through. 11. Then, immediately the door is locked.

12. In either case, after the door is unlocked, if no user on either side pushes a handle bar within 10 seconds, the lights are turned off and the door is locked.
13. There is no time limit on how long it takes for a user to walk through the door.

14. The space inside the revolving door is too small for more than one normal sized adult to walk through the revolving door in the same direction at the same time. 15. However, it is possible for two people, on the opposite sides to walk through the revolving door at the same time.
2. Dividing the World (9 marks ≈ 8.1 minutes)

Classify each sentence in the description of the RevolvingDoor system according to which part of the formula $D,S|R$ it describes. That is in the underline next to each sentence number, write whichever of D, S, and R the numbered sentence is about. It is possible that a sentence is about more than one of D, S, and R.

1. ___________

2. ___________

3. ___________

4. ___________

5. ___________

6. ___________

7. ___________

8. ___________

9. ___________
3. UML Use-Case Diagram (9 marks = 8.1 minutes)

Identify the use cases of the RevolvingDoor system. These should be the actions any public-side user and any employee-side user can do to the interface objects. To each use case, give a descriptive name consisting of the words of an imperative (command) sentence.

Complete the partial UML use-case diagram shown below for the RevolvingDoor system. It shows the two kinds of actors of the system, PublicSideUsers and EmployeeSideUsers, and the system boundary. After you have put each use case as a bubble inside the system boundary, draw a line connecting each use case to each actor that can do the use case.
4. UML Class Diagram (12 marks = 10.8 minutes)

Draw below a UML class diagram for the RevolvingDoor system. In addition, show the two kinds of users, PublicSideUsers and EmployeeSideUsers, introduced in the use case diagram. Show all multiplicities on all classes and on all associations. Please allow for an arbitrary number of users of either kind. With some additional lines, show which parts of the model are in each of the environment, the system, and the interface.
5. Nonfunctional and Other Functional Requirements (21 marks ≈ 18.9 minutes)

a. A logical requirement for the RevolvingDoor system is that it keep all on the public side who do not have a valid company id badge from entering through the revolving door.

Does the RevolvingDoor system always meet this requirement?

If so, explain why

If not:

1. please describe a scenario permitted by the system that violates the requirement by allowing a person on the public side through even though he may not have a valid id badge?

2. what behavior can the HAL company insist of its employees to make sure that no person on the public side without a valid id badge can come through the door?
3. Which part of $D, S \vdash R$, i.e., D, S, or R, is modified by the behavior change described in item 2 just above?

4. Describe changes that can be made to S that make the behavior change described in item 2 above not needed to ensure that the requirement is met.

b. Which part of $D, S \vdash R$, i.e., D, S, or R, contains the idea that all and only HAL employees receive valid HAL id badges.

c. What should the RevolvingDoor system do about the fact that the statement “All and only HAL employees receive valid HAL id badges.” cannot possibly be true?
d. Describe a way that “All HAL employees receive valid HAL id badges.” can be not true.

e. Describe a way that “only HAL employees receive valid HAL id badges.” can be not true.
6. UML Scenario Specification (21 marks ≈ 18.9 minutes)

Draw below a UML sequence diagram for a scenario involving one PublicSideUser, one EmployeeSideUser, the Door, the Lights, the IdCardChecker and the DoorLightController. In this scenario, the EmployeeSideUser pushes on the door at precisely the same time that the PublicSideUser lays his valid id badge up against the id badge plate. However, it is the EmployeeSideUser that pushes the door after it is unlocked and before the 10 seconds are up. Both users walk through the revolving door at the same time, finishing at the same time. Carry the scenario through to the door getting locked after both users have walked through.
Part 3: Ambiguity (15 marks ≈ 13.5 minutes)

7. Only, Also, and Plural (15 marks ≈ 13.5 minutes)

With a drawn line, match each text on the left side with exactly one sentence on the right side, namely one that fits in place of the X in the text. Since the number of items on the two sides are not equal, the correspondence is not 1–1!

X The rest of the people work after lunch.Only I sleep after lunch.
X I do not work after lunch.I only sleep after lunch.
Jeff sleeps after lunch. X I sleep only after lunch.
X The rest of the people sleep after dinner.I sleep after only lunch.
I sleep before lunch. X
X I do not sleep before lunch.
I sleep after dinner. X Also I sleep after lunch.
I brush my teeth after lunch. X I also sleep after lunch.
X I do not sleep after dinner.I sleep also after lunch.
X The rest of the people sleep before lunch. I sleep after also lunch.

Assuming that there are 100 male members, for each sentence below, indicate the all possible numbers of wives that came, according to the strict meaning of the sentence and not assuming that each man has only one wife by law.

1. All members brought their wives.

2. All members brought their wife.
Rewrite All members brought their wives. in singular form (Hint: use Each member as the subject of the sentence.) to make it clear that each member brought exactly one wife. You will get the most credit if you use exactly the same number of words as in the original sentence.

Rewrite All members brought their wives. in singular form (Hint: use Each member as the subject of the sentence.) to make it clear that each member may have brought more than one wife. You will get the most credit if you use exactly the same number of words as in the original sentence.
Part 4: Specification Notations (33 marks ≈ 29.7 minutes)

8. Finite State Machines (15 marks ≈ 13.5 minutes)

Consider the finite state machine, FSM shown below:

Recalling that the state with the little arrow pointing to it from nowhere is the initial state and any state with a double circle outline is an accepting state, check off the blank line next to an input below if and only if the input is accepted by FSM.

- (empty string)
- 0
- 1
- 10
- 11
- 100
- 101
- 110
- 111
- 1000
- 1010
- 1011100101100
- 011101000101010

Describe in words the language that is accepted by FSM.

FSM accepts each string s consisting of only 0s and 1s such that s …
9. Linear Temporal Logic (9 marks ≈ 8.1 minutes)

Below are a bunch of formulae in linear temporal logic. Among them are formulae that describe part of the behavior of the finite state machine \(FSM \) introduced in the previous question. Specifically, among them is a description of the circumstances in which \(FSM \) stays in state \(E_0E_1 \) and descriptions of the circumstances in which \(FSM \) moves out of state \(E_0E_1 \). There are some other irrelevant formulae among the formulae. Put a check mark in the line preceding each of the three relevant formulae.

- \(\square (E_0E_1 \rightarrow (E_0E_1 \mathrel{U} (0 \lor 1))) \)
- \(\square (E_0E_1 \rightarrow (E_0E_1 \mathrel{W} (0 \lor 1))) \)
- \(\Diamond (E_0E_1 \rightarrow (E_0E_1 \mathrel{W} (0 \lor 1))) \)
- \(((E_0E_1 \land 1) \rightarrow \bigcirc E_0O_1) \)
- \(\square ((E_0E_1 \land 1) \rightarrow E_0O_1) \)
- \(\square ((E_0E_1 \land 1) \rightarrow \bigcirc E_0O_1) \)
- \(\square ((E_0E_1 \lor 0) \rightarrow \bigcirc O_0E_1) \)
- \(\square ((E_0E_1 \lor 0) \rightarrow \bigcirc O_0E_1) \)
- \(\square ((E_0E_1 \land 0) \rightarrow \bigcirc O_0E_1) \)
- \(\square ((E_0E_1 \land 0) \rightarrow \bigcirc O_0O_1) \)
10. Decision Tables (9 marks = 8.1 Minutes)

Consider the decision table below that describes how a clerk is to behave when a customer buys a product using any of several methods of payments, according to the cost of the product, the familiarity of the customer to the clerk, and the method of payment.

<table>
<thead>
<tr>
<th>Item costs less than $100.00</th>
<th>Y</th>
<th>Y</th>
<th>N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer pays by cheque</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Customer is known</td>
<td>N</td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ring up the sale immediately X

Check the customer in the local database X

Call the supervisor X

Check the credit card in the credit card database X

Express the meaning of this decision table using a sequence of conditional statements. You will find in each conditional statement, parts already filled out and parts not filled out. Fill out the non-filled out parts correctly.

IF the item costs less than $100.00 AND the customer pays by cheque AND the customer is known

THEN __.

IF __ AND

__ AND

__

THEN check the customer in the local database.

IF the item costs $100.00 or more AND the customer pays by cheque

THEN __.
IF \[\text{condition} \] AND \[\text{condition} \]

THEN check the credit card in the credit card database.

In the last two conditional statements, whether the customer is known or not known