
Software Measurement

Notes by mainly Jo Anne Atlee,
with modifications by Daniel Berry and Richard Trefler

Fall 2012

CS445/CS645/ECE451/SE463 —COSTS 0-0

'

&

$

%

“There is no point in using exact methods where there is no clarity in the

concepts and issues to which they are to be applied.”

— von Neumann and Morganstern,

“Theory of Games”

CS445/CS645/ECE451/SE463 —COSTS 1

'

&

$

%

Software Estimation and Metrics

Dilbert, how long will it take your team to port our inventory control system to NT, as well

as fix a few known bugs, make the user interface simpler, and implement just a few new

features that the customers have been asking for?

i.e.,more than just informal guesses. How did you calculate the estimates?

Tom DeMarco:

“An estimate is the most optimistic prediction that has a non-zero probability of

coming true. Accepting this definition leads irrevocably toward a method called

what’s-the-earliest-date-by-which-you-can’t-prove-you-won’t-be-finished

estimating.”

CS445/CS645/ECE451/SE463 —COSTS 2

'

&

$

%

Our Job is to Estimate:

1. time to develop

2. cost

3. number of developer/months?

CS445/CS645/ECE451/SE463 —COSTS 3

'

&

$

%

Software Estimation and Reality

• Measurements make sense only when you have something well understood

to compare it too

→ A lot of software is one-time throw away OR changing requirements OR

changing platform OR changing developers OR brave new worlds

→ cf.,estimation of cost of bridge construction

CS445/CS645/ECE451/SE463 —COSTS 4

'

&

$

%

• A lot of industrial people claim to understand estimation, and they may

understand their world ... but how much do these kinds of systems have in

common?

e.g., embedded systems, old fashioned compilers, COTS products, web applets

• If a project is mostly the same, well understood, same people, same tools,

same platform, then OK sure

CS445/CS645/ECE451/SE463 —COSTS 5

'

&

$

%

Why Can’t We Estimate Very Well?

• Yes, software engineering is still young ...

• ... AND it’s hard to understand costs and estimation when the ground keeps

shifting ...

• ... AND this is one traditional engineering tool everyone would love to do

well at!

Clearly, we want to be able to make reasonable estimates one day!

CS445/CS645/ECE451/SE463 —COSTS 6

'

&

$

%

• Likely, when you have been working in industry for a few years, you will

become reasonably good at estimating the kinds of systems you build ... but

across the whole class I’ll bet there will be a variety of answers

• I don’t think I can tell you anything useful right now ... wait until you have

some experience

• However, there is no shortage of metrics for software and software

productivity. Lotsa $$$ tools, methodologies, books out there too.

CS445/CS645/ECE451/SE463 —COSTS 7

Software Cost Estimation

Given an early description of the system, you want to determine
as early as possible if a proposed system or requirement is
technically and economically feasible. Economically feasible
means whether the client is willing to pay what it will cost to
develop the project, and whether the developer is willing to
devote the resources to the project. Both of these questions have
to be answered based on estimates, estimates of the cost of the
project and estimates of the development effort.

CS445/CS645/ECE451/SE463 —COSTS 7-1

Why Estimate Software Cost and Effort?

• To provide a basis for agreeing to a job:

You must make a business case for taking on a job or set
thresholds for negotiating a price for performing the job.

• To make commitmemts that you can meet:

Cost overruns can cause customers to cancel projects.
Alternatively, to avoid passing on all extra costs to
customer, the project team may work without full financial
compensation, swallowing the cost overrun.

• To help you track progress:

As it is said, you cannot manage what you cannot measure.
If you don’t know how long it will take to develop a system,
you won’t know if you’re falling behind.

CS445/CS645/ECE451/SE463 —COSTS 7-2

We Can’t Estimate Very Well

Unfortunately, it is very difficult to estimate the cost and effort to
build a project when you don’t know very much about that
project.

• We’re not estimating repeatable, objective phenomena.

• The earlier the estimate, the less is known about the project.

• Estimates can be biased by business and other pressures.

The desire to take a job may prompt you to believe an
unrealistic estimate.

CS445/CS645/ECE451/SE463 —COSTS 7-3

• A goal to estimate within 10% of actual cost is unrealistic.

Experience has shown that by the time we know enough
about a project to estimate its cost to within 10% of its
actual cost, the product is almost complete.

CS445/CS645/ECE451/SE463 —COSTS 7-4

Accuracy of Estimates During Development

0
10
20
30
40
50
60
70
80
90

100

0 25 50 75 100

Percentage of Total Project Time

E
st

im
at

ed
 P

er
ce

n
t

C
o

m
p

le
te

10

30

50

75

95
98

95

98
99

100

9890

CS445/CS645/ECE451/SE463 —COSTS 7-5

Distribution of Code RE

10–20% of the code = central approximation.

80–90% of the code = exceptional details.

99.99% of execution time is spent in the
central 10–20% of the code.

It’s hard to test the exceptional details code,
the 80–90% of the code, because it gets
executed less than 0.01% of the execution
time.

 2019 Daniel M. Berry History of Formal Methods My View of the Prehistory & History Pg. 136

And correcting a defect in this 80-90% of the code likely involves
changes in related code scattered all over the code.

Practice Makes Perfect

However, if you practice, you’ll get better.

Steve McConnell equates software cost estimation with
estimating how much pocket change there is in a room full of
people. Your first attempt is likely to be way off, but you get
better. Maybe you start learning how to account for the type of
people in the room. Perhaps, students carry more pocket change
than business people. Perhaps, men carry more pocket change
than women, who are more likely to have purses. However, even
while you get better, you will continue to make mistakes. Of
course, if you go to the States where there are no $1 or $2 coins,
you will probably be way off and will have to learn how to
estimate all over again.

CS445/CS645/ECE451/SE463 —COSTS 7-6

Delphi Method

Delphi methods are based on expert judgement

• Each expert submits a secret prediction, using whatever
process he or she chooses.

• The average estimate is sent to the entire group of experts.

• Each expert revises his or her prediction privately.

In some variations of the Delphi method, the experts discuss
their rationales before new estimates are made, justifications
are circulated anonymously, or no discussion is allowed.

• Repeat until no expert wants to revise his or her estimate,
i.e., until a fixed point is reached.

CS445/CS645/ECE451/SE463 —COSTS 7-7

Critical Points About Delphi

• Its success depends on the experts’ abilities to determine
which past projects are similar and in which ways.

• An expert’s experience cannot be transferred to junior
developers.

CS445/CS645/ECE451/SE463 —COSTS 7-8

LOC or KLOC

LOC — lines of code
KLOC — thousand LOC

Problems with them:

• How do you measure them?

– How do you count one line that has several statements?
– How do you count a statement that is over several

lines?
– How do you count constructs, e.g., conditionals?

• One person’s line may be another’s several lines

But they are used as the unit of code size with care and ...

with standardsthat answer these questions.

CS445/CS645/ECE451/SE463 —COSTS 7-9

Estimating Resources From Requirements

During requirements analysis, we do not have code with which to
make estimates.

We want to be able to estimate cost based on what we know at
requirements analysis time, i.e., the requirements.

So we break the problem down into three parts:

1. estimating the number of function points from the
requirements,

2. estimating code size from function points, and

3. estimating resources required (time, personnel, money)
from code size.

CS445/CS645/ECE451/SE463 —COSTS 7-10

'

&

$

%

Function Points

• These have a big following

• Probably a better measure than KLOC ... butcaveat emptor

• Makes some real sense in industrial settings, well understood serious

backend kind of systems

• Basic idea:

– Count # of inputs and output to a function (perhaps multiplying by some

scaling factors)

– Count # of other kinds of references/transactions

– Add ’em up. That’s the complexity of this function. See the next slide for

details on adding ’em up!

• Lots of tools and methods exist that use FPs.

CS445/CS645/ECE451/SE463 —COSTS 8

Estimating Function Points From Requirements

Function points are used to predict the size of a system (#
“functions”)

Idea is to predict the complexity of the system in terms of the
various functions to write, without being as specific as lines of
code, which is programming language dependent. So, we are
counting the various types of functions, and weighting them
according to their types and complexities.

The Basic Model is:

FP = a P + a P + ... + a P1 1 2 2 n n
weighting factor for function type

of function type

where Pi is the # of instances of theith function type

CS445/CS645/ECE451/SE463 —COSTS 8-1

Weightings

S = Simple, N = Normal, C = Complex

Function S N C
user input 3 4 6
e.g., input event, data entry
user output 4 5 7
e.g., screen, error message, report
user query 3 4 6
e.g., simpler request or response
function that doesn’t require
a change to data or system state

external interfaces 5 10 15
e.g., files, other systems; probably
want unique weightings
for each identified interface

CS445/CS645/ECE451/SE463 —COSTS 8-2

Estimating Code Size From Function Points

There are tables that list for each programming language, the
number of statements in it that are required to implement one
function point.

Language Lines/FP
Assembly 50
C 15
C++ 12
Java 9
LISP 2

These tables are calibrated for each shop, for each domain, etc.

CS445/CS645/ECE451/SE463 —COSTS 8-3

Note that it was observed a long time ago that a programmer’s
productivity in terms of debugged, documented, lines of code per
day is constant and is independent of the language he or she is
using.

This is why the higher the level the language, the more
productive is the programmer; he or she does much more per line
he or she writes.

CS445/CS645/ECE451/SE463 —COSTS 8-4

Estimating Resources From Lines of Code

There are several methods.

The most popular is COCOMO.

CS445/CS645/ECE451/SE463 —COSTS 8-5

'

&

$

%

COCOMO [Boehm]

COnstructive COst MOdel

• Barry Boehm’s 1981 bookSoftware Engineering Economicsis revered by

many,

[but others are skeptical]

• COCOMO is a set of models for performing software estimation, based on

Boehm’s (and others’) experiences building software systems for the

US DoD.

• Three levels: basic, intermediate, and advanced.The difference is in how

detailed you want to be.

• Boehm (who is considered an optimist!):

“Today [1981], a software cost estimation model is doing well if it can

estimate within 20% of the actual costs, 70% of the time, and on its own turf

(that is, within the class of projects to which it has been calibrated).

CS445/CS645/ECE451/SE463 —COSTS 9

'

&

$

%

Basic COCOMO Model

E = a× KLOCb × X D = c× Ed

E = effort in person-months KLOC = size of resulting system

D = development time in months a, b, c, d = empirically observed

X = project attribute multipliers coefficients:

Kind of project a b c d

organic 2.4 1.05 2.5 0.38

semi-detached 3.0 1.12 2.5 0.35

embedded 3.6 1.20 2.5 0.32

organic — smaller project, requirements not rigid, experienced developers

semi-detached— intermediate in size & complexity, mix of rigid and flexible

requirements

embedded — tight constraints/requirements on hardware, software, environment

CS445/CS645/ECE451/SE463 —COSTS 10

Notes :

KLOC is the estimated size of code, adjusted to account for any
reuse of design or code.

a, b, c, andd areempiricallyobserved coefficients.

Both are adjusted at each shop for each domain based on
historical data.

TheX stands for multipliers for 16 project attributes that have
been observed to be critical.

CS445/CS645/ECE451/SE463 —COSTS 10-1

Project Attributes

• product attributes: reliability, complexity

required reliability↑, complexity↑, database size↑
• resource attributes: execution time, memory constraints

execution time↑, memory↑, hardware volatility↑, tight
response time↑

• personnel attributes: experience of developers

quality of analysts↓, quality of programmers↓, experience
with product↓,hardware experience↓, programming lang.
experience↓

• project attributes: modern techniques, prog. lang.

use of software tools (e.g., debugger)↓, use of modern PL↓,
schedule constraints↑

CS445/CS645/ECE451/SE463 —COSTS 10-2

Combine FP and COCOMO

The FPs are calculated from the requirements and are translated
into estimated LOCs, which is then used in the COCOMO
estimation method.

CS445/CS645/ECE451/SE463 —COSTS 10-3

Estimate time:

Recall the formula

T = c x E d

development
time (months)

project−specific
 factors

where c and d are based on product type like a and b

Effort is measured in person-months, and time is measured in
months.

Why is formula not linear?

CS445/CS645/ECE451/SE463 —COSTS 10-4

Mythical Person-Month

Freddy Brooks’s famous book:Mythical Man-Month

The problem with person months as unit of measure is that it
implies the following graph.

Time

Pe
rs

on
s

CS445/CS645/ECE451/SE463 —COSTS 10-5

But it does not work: Main counter example:

One woman gestates a baby in 9 months. How many months are
required for three women to gestate a baby? Certain tasks require
a certain minimum amount of time and throwing more personnel
at the tasks does not reduce the time needed.

It does work for painting a fence. Why? Because no
communication is required.

It does not work for software development teams. Why?

CS445/CS645/ECE451/SE463 —COSTS 10-6

Importance of Communication in a Group Project:

number of persons, lines of communication

5,104,63,32,11,0

Famous quote from Freddy Brooks: “Adding more people to a
late project makes it even later.”

At some point, a new person costs in communication more than
he or she adds to the work that can be done.

This is not even counting the fact that a new person wastes his or
her own and others’ time getting up to speed.

CS445/CS645/ECE451/SE463 —COSTS 10-7

Minimum Personnel Research

The other side of the coin is that any given project needs at least
some minimum numberX of people, and if you don’t have that
many people, you need to add more, even though it will cost
delay. It’s a choice between delay and never finishing.

CS445/CS645/ECE451/SE463 —COSTS 10-8

Price to Win Techniques

Pricing to win means bidding as low as possible to beat the
competition and win the contract.

But then you will not get enough money to pay for the resources
needed for development, and you will not show a profit.

This can hardly be called an estimation technique.

The idea is to price low enough to win the contract, but high
enough to show a profit.

CS445/CS645/ECE451/SE463 —COSTS 10-9

Experience

• models have to be calibrated to an organization

Accuracy is perturbed by local factors, such as expertise,
process, product type, definition of LOC.

• 100%+ errors are normal

A software cost estimate model is doing well if it can
estimate within 20% of the actual costs and within 70% of
the actual time, and this is assuming that the model has
been calibrated to this type and size of project!

• model parameters based on old projects/technology

Weights and coefficients are based on empirical studies of
past projects using old technology, and may be completely
unlike new projects.

CS445/CS645/ECE451/SE463 —COSTS 10-10

• Predictions can become self-fulfilling

If estimates are used to generate the project plan, which is
used by managers to manage the project, the project ends up
having to conform to the estimate!

Parkinson’s Law!

CS445/CS645/ECE451/SE463 —COSTS 10-11

So why bother?

• You cannot control what you cannot measure

You need this information to negotiate cost of product. You
need this information also to plan project, to determine how
many developers to hire or to assign to this project, and to
know how long they’ll be dedicated to this project and not
to others. For these reasons, poor estimates may be better
than no estimates.

• Your ability improves with experience.

Don’t get too caught up in an estimate. It’s wrong. You’ll
get better, but you’ll never master the problem.

CS445/CS645/ECE451/SE463 —COSTS 10-12

• Some people will be better at estimating than others.

Cost estimation is not a science. It’s an art, based on
intuition and experience. Be wary of any method or tool
vendor that claims to predict cost or effort to unrealistic
precision, i.e., more than one significant digit!.

CS445/CS645/ECE451/SE463 —COSTS 10-13

Why you underestimate by an order of magnitude

Fred Brooks observes:

Every body thinksprogramwhen he or she should be thinking
software system product.

• program—what you write for yourself (and thus what you
know)

• system—program that interfaces with other programs,
directly or indirectly, costs 3 times as much as central
program (more stuff to write)

• product—program written for others, that must therefore be
robust, costs 3 times as much as central program

• software system product—program that is systemand
product, costs 9 times as much as central program

CS445/CS645/ECE451/SE463 —COSTS 10-14

