
frederic.bouchard@uwaterloo.ca

Declarative
Specifications for

Software Code Base
Software Engineering using the functional paradigm

CS645 – Requirements: Specifications & Analysis

http://googleslidesppt.com/
http://googleslidesppt.com/

Contents

01

02

03

04

Assumptions, preventions, problems

The end of imperative

Currying, purity, state explosion

The functional approach

Breaking the dependencies, splitting the truth

The lambda architecture

Tutorials, technologies, websites

Where to start?

The key
concept

Assist REs with greater flexibility
and easier proof in the code.

Imperative Vs Declarative

HOW WHAT

User Manual

Code / Implementation

Imperative Vs Declarative

HOW WHAT

User Manual

Code / Implementation

We want to avoid describing

the steps and focus on the

exchange of concepts to

achieve a similar truth.

Engineering cycle

We saw in class a graph showing the cost of

fixing an error over the engineering cycle. We

see that the last phases are extremely

expensive and we are trying to put in place

measures to prevent the workload in the last

phase.

In your opinion, is it possible to avoid

maintenance cycles?
R

175

140

105

70

35

210

0

S P D C I M

Requirements

Specifications

Plan

Design

Code

Integration

Maintenance

R
e

la
ti
v
e

 c
o

s
t
to

 f
ix

 a
 f

a
u

lt

Expected engineering cycle

Since it is impossible to predict

the future then let's try to

change the shape of the

curve.

R

175

140

105

70

35

210

0

S P D C I M

R
e

la
ti
v
e

 c
o

s
t
to

 f
ix

 a
 f

a
u

lt

R

175

140

105

70

35

210

0

S P D C I M
R

e
la

ti
v
e

 c
o

s
t
to

 f
ix

 a
 f

a
u

lt

The curse of dimensionality

Boolean Boolean

Boolean

Boolean Boolean

Boolean

Boolean Boolean

Boolean Boolean

A B C

D
A = 21 = 2

B = 22 = 4

C = 23 = 8

D = 24 = 16

The complexity grows exponentially.

Could we fight this effect using

induction?

We want symbolic computation

♦

❤

♣
❤ ♦

❤

♣

❤ […]

♦
❤

♣
♠

❤ ♠ ❤

❤

♠ ❤ […]

Proof: 2 hearts = 1 spade

The end of
imperative

Respond quickly to market trends.

Software as a tree

Main

A B C

E FD G H I

J K

H has a bad behavior, we need to implement L quickly.

Software as a tree

Main

A B C

E FD G H I

J K

Imperative iteration process

Software as a tree

Main

A B C

E FD G I

J K

The best scenario would be to delete H. But would the program work in object-oriented paradigm?

Some intuition
Think of a structure that looks like HTML

<nav>

<h1>

My title

</h1>

</nav>

<nav>

<h1>

My title

</h1>

</nav>

Function as an HTML structure: The idea is the same as HTML, we are looking for a structure where we can

add nodes and delete without paying the consequences. Note that in this structure, we can add almost

anything anywhere and we look for the same thing but this time in terms of function.

Functional
approach

Currying, purity, state explosion

What is wrong with this code?

function deleteLastElement(X) {

const len = X.length;

if(len > 0) {
delete X[len – 1];

}

}

What is wrong with this code?

function deleteLastElement(X) {

const len = X.length;

if(len > 0) {
delete X[len – 1];

}

} It mutates the state!!

What is state mutation?

function main() {

X = [‘a’, ‘b’, ‘c’]
console.log(X);
// [‘a’, ‘b’, ‘c’]

deleteLastElement(X);
console.log(X);
// [‘a’, ‘b’]

deleteLastElement(X);
console.log(X);
// [‘a’]

}

You cannot use inductive evidence

given by symbolic computation

because your function does not

generate predictable outputs.

Even worse
function main() {

[… some code …]

const numberOfSubscribers =
subscribers.length;

register(subscribers);

[… some code involving
numberOfSubscribers …]

}

Is it still intuitive that the list that I

pass in parameter will be modified?

function register(subscribers) {

[… some code …]

deleteLastElement(subscribers);

[… some code …]
}

Notion of purity

01

02

03

Same input, same output

Predictive result

Depend only on arguments passed in

Without interference

The effects live only in the function scope

Without side effects

How could we fix that?

function deleteLastElement(X) {

const len = X.length;

if(len > 0) {
delete X[len – 1];

}

}

function deleteLastElement(X) {

const len = X.length;

if(len > 0) {
delete X[len – 1];

}

}

function deleteLastElement(X) {

const index = X.length - 1;

return X.filter(
(el, idx) => idx < index

);

}

Other benefits gained through filtering?

function deleteLastElement(X) {

const len = X.length;

if(len > 0) {
delete X[len – 1];

}

}

function deleteLastElement(X) {

const index = X.length - 1;

return X.filter(
(el, idx) => idx < index

);

}

Other benefits gained through filtering?

Retro Engineering: Think of you doing a search on a mobile app, you enter the keywords and you are not

satisfied with the results, so you enter others words. If you have filtered, you do not even need to restart the

process of getting the data, you are already ready to answer the query.

What happens if the mutation is desired?

In the computer’s memory

subscribers : #111111

function register(subscribers) {

[… some code …]

Y = deleteLastElement(subscribers);

[… some code …]
return Y;

}

In the computer’s memory

subscribers : #1111BC

function main() {
[… some code …]

const numberOfSubscribers =
subscribers.length;

subscribers =
register(subscribers);

[… some code involving
numberOfSubscribers …]

}

Why is this a problem?

function add(arr) {

let sum = 0;

for (const i = 0;
i < arr.length; i++) {
sum += arr[i];

}

return sum;

}

How could we fix that?

function add(arr) {

let sum = 0;

for (const i = 0;
i < arr.length; i++) {
sum += arr[i];

}

return sum;

}

Over-specifications!!

Does it change anything if I iterate in

another way?

If something is not important, do not

specify it. You do not improve the program,

you constrain it and make it less flexible.

In agreement with Robert C. Martin, a

programmer spends 80% of his time

reading code. Let's optimize this time by

going to the basics. There the loop was not

big but in a real case, it would surely be.

How could we fix that?

function add(arr) {

let sum = 0;

for (const i = 0;
i < arr.length; i++) {
sum += arr[i];

}

return sum;

}

function add(arr) {

return arr.reduce(
(sum, num) => sum + num,

0);

}

What is wrong with this code?

function merge(artists, artist)
{

const name = artist.name;
artists[name] = artist;

}

How could we fix that?

function merge(artists, artist)
{

const name = artist.name;
artists[name] = artist;

}

It mutates the state!!

Tip: If a function has no return, it has a

strong chance of being imperative.

How could we fix that?

function merge(artists, artist)
{

const name = artist.name;
artists[name] = artist;

}

function merge(artists, artist)
{

return {
…artists,
[artist.name]: artist

};

}

The lambda
architecture
Breaking the dependencies,

splitting the truth

What Object-Oriented code looks like
(most of the time)

Try to reuse the code of one

class for another program. Is it

possible to do it without

copying and pasting the

content?

The problem is that every time

we want to reuse we can only

abstract or duplicate.

Abstracting reduces the

simplicity of the code.

Duplicating reduces the

efficiency of maintenance.

Breaking the dependencies

λ

context

#6 - Representation of Truth

#5 - New Representation of Truth

state

What we really want to do is to

create an architecture that

takes a series of truth

parameters and returns a more

granular truth by interpreting

only what is in its field of

knowledge.

You can see the problem as a

group of people. If I ask a

question, I do not expect

everyone to know the answer,

but I expect someone to react

and others to be more

expressive.

Lambda-Machine
Here is a classic

lambda architecture.

We take a proposition

and refine it until it

becomes atomic

proposition.

Then the atomic

propositions are

distributed to the

lambda-nodes who

will take care of

interpreting it by

redefining the domain

of knowledge.

More in my paper.

Group Reaction Effect

λ ? X

Unpredictable reaction in a black box

Guarantee Output:

You do not know how

the elements will react

with each other, but

you know that they will

work towards a

reasonable solution.

Splitting the truth:

The most difficult part

is to convey one's

intention and blindly

believe in the ability of

our group.

Where to
start?

Try it by yourself

All the ideas expressed in this presentation are imbued with my personal and professional

experiences during my computer career. If you are interested in the subject, consult the following

sites to get started.

Functional Declarative

React Documentation

https://reactjs.org/docs/hello-world.html

React good tutorial

https://reactjs.org/tutorial/tutorial.html

https://reactjs.org/docs/thinking-in-react.html

Lambda Architecture

Redux

https://redux.js.org/

Redux good tutorial

https://redux.js.org/docs/basics/ExampleTodo

List.html

https://spapas.github.io/2016/03/02/react-

redux-tutorial/

The links offered are oriented web development because these languages have evolved and support

these paradigms very well. Several other languages also cover the same subject, but they are rarely

derived to make them complete programs. LINQ, F#, SQL, Lodash, Java 8, etc.

Tutorials / Documentations

https://reactjs.org/docs/hello-world.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/docs/thinking-in-react.html
https://redux.js.org/
https://redux.js.org/docs/basics/ExampleTodoList.html
https://spapas.github.io/2016/03/02/react-redux-tutorial/

Some shapes and icons in this template were created by GoogleSlidesppt.com

Some backgrounds in this template were created by GoogleSlidesppt.com

Some illustrated images in this template were created by GoogleSlidesppt.com

This presentation template created by GoogleSlidesppt.com

Thank you for using GoogleSlidesppt.com

Some inserted pictures in this template were created by pixabay.com

Credits

http://googleslidesppt.com/
http://googleslidesppt.com/
http://googleslidesppt.com/
http://googleslidesppt.com/
https://pixabay.com/

