WATER DEMAND DATA ANALYSIS AUTOMATION: REQUIREMENTS AND SPECIFICATIONS

DEPARTMENT OF EARTH SCIENCE

JUNHAO LU

FOR CS 645

WATER DEMAND DATA ANALYSIS: BACKGROUND

- CITY OF WATERLOO FACING DECLINE OF TAP WATER SALES
- LOSS OF REVENUES
- ABLE TO FORECAST WATER DEMAND

METHOD

- FIT A SHIFTED, ASYMMETRIC HISTOGRAM WITH CONTINUOUS PROBABILITY DENSITY FUNCTION
 - GENERATE PDF PARAMETERS
- **REGRESSION ANALYSIS**
 - QUANTIFY RELATIONSHIPS BETWEEN PDF PARAMETERS, PRICE AND TEMPERATURE

CLIENT REQUIREMENTS

Orgrinal Requirements

 Algorithm presented in paper

0

• Implemented in Excel sheet

REQUIREMENTS AND SPECIFICATIONS

 \odot

- DOMAIN MODEL
- USE CASE
- DATABASE DESIGN
- FUNCTION SPECIFICATIONS

START FROM MATLAB

ADVANTAGES

- 1. BUILT-IN FUNCTIONS (PLOTTING, LEAST SQUARE SOLVERS)
- 2. FAST WAY TO DELIVER RUNNABLE VERSIONS

DISADVANTAGES

- 1. LOW EFFICIENCY
- 2. TRANSFER TO ANOTHER LANGUAGE IF EFFICIENCY FAILED TO MEET THE REQUIRED LEVEL

RESULTS BY MATLAB

			Norm of	First-order
Iteration	Func-count	: f(x)	step	optimality
0	6	22.7491		38.5
1	12	1.46905	5.6481	12.7
2	18	0.0246356	2.47207	0.9
3	24	0.000396985	0.615079	0.0683
4	30	0.000134524	0.253638	0.015
5	36	0.000101864	0.230588	0.00295
6	42	0.000100205	0.0684746	0.000156
7	48	0.0001002	0.00341715	2.89e-07

Local minimum found.

Optimization completed because the <u>size of the gradient</u> is less than the selected value of the <u>optimality tolerance</u>.

<<u>stopping criteria details</u>>

Using polynomial series Extension by trust-region-reflective PDF: y = (exp(-(0.797192 + 0.290841x + 1/2*tan(53.124658/180*pi)x^2 + -0.192689x^3+ 0.018420x^4)))/18.421904 MSE_ob: 0.000066 MSE_m: 0.000241

UNCERTAINTIES DEALING WITH NUMERICAL PROBLEMS

- CLIENT CAN MAKE MISTAKES
- CLIENT NOT SURE WHAT THE CORRECT RESULTS SHOULD BE LIKE
- VAGUE REQUESTS ON EFFICIENCY
- HARD TO TEST

ERRORS MADE BY CLIENT

- DOCUMENT ERRORS
- IMPLEMENTATION ERRORS
- NEED MATHEMATICAL BACKGROUND TO NOTICE THOSE ERRORS
- HARD TO FIND IF IT DOESN'T AFFECT THE RESULTS OF ONE PARTICULAR CASE

UNCERTAINTY IN NUMERICAL FUNCTIONS

Which is correct?

UNCERTAINTY IN NUMERICAL FUNCTIONS

- NOT FAMILIAR WITH THE BEHAVIOR OF LEAST SQUARE SOLVER
- WRONG PATH COULD LEAD TO BETTER RESULTS
- USE MORE TEST CASES

TEST

- HARD TO GUARANTEE THE CORRECTNESS OF TEST CASES
- CLIENT AND I BOTH WRITE TEST CASES, COMPARE WITH EACH OTHER
- FREQUENT WALKTHROUGHS

POSSIBLE SOLUTIONS

- FREQUENT MEETINGS AND WALKTHROUGHS
- ABLE TO IDENTIFY CLIENT'S MISTAKES
- SPECIFY ON CONVERGENCE CRITERIA

CASE STUDIES: NUMERICAL AND SOFTWARE REQUIREMENTS FOR GENERAL NONLINEAR FINITE ELEMENT ANALYSIS

- MAN-MACHINE COMMUNICATION
- STRUCTURAL MODELING
- ANALYSIS RESTART
- ERROR RECOVERY
- COMPUTER RESOURCE UTILIZATION

Dodds Jr, R. H., Lopez, L. A., & Pecknold, D. A. (1978).

Numerical and software requirements for general nonlinear finite element analysis. University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign.

CONCLUSIONS

- FOCUSING ON GENERATING RESULTS FIRST
- IMPORTANCE OF WALKTHROUGH
- IDENTIFY CLIENT'S MISTAKES
- ALWAYS THINK ABOUT A LARGER SCOPE