
Classes:
Concepts and
Identification

Daniel M. Berry

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 1

Introduction -1

All your acquaintance with classes prior to
this course has been as a device to implement
information hiding and object orientation.

You have looked at them as documentation of
code written in C++, Java, and possibly other
languages.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 7

Introduction -2

You may have even looked at class diagrams
as an expression of the architecture of a
program either to be built or that has been
built out of classes.

You may have looked at class diagrams as a
notation in which to play with the architecture
of a program in order to arrive at the best
architecture.

 2002 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 8

Introduction -3

It is better to work with the diagrams than raw
code to arrive at the best architecture for two
reasons:

1. Code is way too detailed to see the
architecture in it; class diagrams are at a
higher level of abstraction than is the code
and are at the right level of abstraction in
which to consider the architecture.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 9

Introduction -4

2. One can decide on possible architectures
long before even considering code; in this
case, a notation is needed
g with which to express the architecture

and
g that is systematic enough that the

meaning of the diagram and its
implication on the final code are clear

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 10

Introduction -5

Indeed, people who play with patterns to help
find the best architecture use class diagrams
as the medium in which to describe both the
patterns and the architectures that are
instances of these patterns.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 11

Introduction -6

However, the question remains, “How are
class diagrams, and, indeed how are all of
UML, used in requirements engineering to
help arrive at a specification of
requirements?”

This lecture tries to answer this question by
considering some examples of deriving a
class diagram from a problem description.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 12

Introduction -7

Later, we will look at deriving scenarios and
use cases from these same problem
descriptions.

Still later, we will look at specifying user
interfaces for some of these problem
descriptions.

 2002 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 13

Example 2: Turnstile

The city of Waterloo has decided to raise
funds by instituting users fees for public
parks. We need to implement a complete
system of money collection, security, etc.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 49

Dividing the World

World

InterfaceEnvironment System
Shared

Fuzzy Boundary Sharp Boundary

The Environment is the part of the World that
is affected by the System.

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 45

Turnstile Requirements

Informal requirements:Collect $1 fee from
each human park user on entry to park (no
fee to leave).

g Ensure that no one may enter park
without paying.

g Ensure that anyone who has paid may
enter park.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 49

Possible Solutions

Solution #1: Employ human fee collectors.
Enforce security by instituting the Waterloo
Park Militia, armed guards who make
certain no one uses a park without paying
a user fee.

Solution #2: Use chain link fences for security,
use turnstiles with automated coin
collection. After some research, we find
appropriate turnstile hardware, but it’s
brand new technology so we must create
the embedded software system....

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 50

The Park World -1

There is a barrier to enter a park. A person
inserts a coin, the turnstile unlocks, allowing
the person to push the turnstile and enter the
park.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 51

The Park World -2a

environment visitorS
does insert of coinS to CoinSlot

detects unlocking of Barrier
does push of Barrier

coinS
fence
personS≡≡≡≡≡cc

c
c
c
c
c
c
c

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 49

The Park World -2b
shared coinSlot receives insert(denom)
phenomena receives inserted?()

does addCoin(denom) to
TurnstileSystem

Barrier receives push()
receives unlock()

receives inRotation?()
receives lock() or locked?()

does addVisitor() to
TurnstileSystemcc

c
c
c
c
c
c
c
c
c
c
c

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 50

The Park World -2c

software TurnstileSystem
system does inserted?() to CoinSlot

does inRotation?() to Barrier
does unlock() to Barrier

does lock() or locked?() to
Barrier

receives addCoin(denom)
receives addVisitor()c

c
c
c
c
c
c
c
c
c

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 52

The Park World -3

The software system and the environment
interact via the shared phenomena, which may
be both sensed and controlled by both the
software system and the environment:

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 53

The Park World -4

g The environment controls insertions of
coins into coin slots.

g The software system senses coin insertion
and then reacts by unlocking the turnstile.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 54

The Park World -5

g The environment senses that the turnstile
is unlocked and a person can rotate the
turnstile (to enter the park).

g The software system senses turnstile
rotation and eventually either locks the
turnstile, senses that the turnstile has
locked, or assumes that the turnstile locks
itself after rotation.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 55

The Park World -6

What locks and unlocks and what is pushed
and is rotated is the barrier, and this barrier
together with the coin slot form the turnstile.
The barrier and the coin slot together are the
phenomena shared between the turnstile
software system and the visitor in the
environment.

Accordingly, we may construct a class
diagram, enhanced from what you have seen
in the tutorial on Rational Rose.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 56

Turnstile Class Diagram

CoinSlot

denom

Coin

denom

push()

Visitor
<<actor>>

1

1

1

1

1 1

1

*

numCoins(denom):Integer

addCoin(denom)

numEntries():Integer

nTurnstileSystem

m

addVisitor()

inRotation?():bool

1

insert(denom)
inserted?():integer

Barrier

locked
rotating

unlock()

lock() or locked?():bool

Environment

Software System

Interface

Shared
Phenomena

n n

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 57

Turnstile Use Cases

push to Barrier

insert to CoinSlot

TurnstileSystem/CoinSlot/Barrier

Visitor

 2002 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 61

Real World Example

Now we consider how to build a necessarily
incomplete model from the poor information
you get from clients.

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 58

Example 3: Voting

We now look at a system to automate voting
that was motivated by what happened in the
U.S. presidential elections in November 2000.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 58

Voting Problems -1

We have all seen the problems that Florida
and the U.S. had in the 2000 presidential
elections to get an accurate count of the
votes. These counting problems are caused
at least partially by the use of ancient
punched-card based voting machines. If a
voter does not punch out a chad (the piece of
the card that makes a hole) completely, his or
her vote is not counted by the counting
machines that read the card ballots, looking
for holes signifying votes.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 59

Voting Problems -2

Yet we all know how easy it is to vote at these
WWW sites that conduct informal polls. These
sites have a much better potential of
accurately counting a vote that has been cast.
Perhaps we should install an electronic voting
system, allowing people to vote via the
internet at election web sites.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 60

Voting Problems -3

Of course, there is now a whole new set of
security problems caused by the poor security
of the internet. Can you imagine if hackers
managed to break into the election web site
and changed the votes.

If we decide that security is a problem, we can
forget about using the internet and provide
each polling place with an intranet and
workstations to replace the ancient voting
machines.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 61

Voting Problems -4

On the other hand, if the security can be
assured, voting by the internet would
eliminate the need for absentee ballots,
provided that internet access were universal
enough, say as much as a telephone or
television. We are not there yet, but are getting
there.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 62

Voting Problems -5

Recall that an absentee ballot is a ballot filled
out and snail mailed in by a voter who cannot
be present in the polling place during the time
the polls are open, e.g., because of illness, a
religious holiday, or being out of town.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 63

Voting Problems -6

Below is described the requirements for one
particular electronic voting system, namely
Sensus by Lorrie F. Cranor.

Before we get into it, please understand the
role of the requirements engineer (RE).

 2002 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 68

Role of the RE -1

He or she is often called in to work with
problems that are totally new to him or her.
The problem description uses vocabulary
unfamiliar to him or her.

It is the job of the requirements engineer to
begin to form a model of the described
problem so that he or she can use the model
to identify what he or she does not understand
and to ask questions of the client.

 2002 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 69

Role of the RE -2

Very often this initial model is formed in
ignorance. The requirements engineer
identifies the nouns, verbs, adjectives, and
adverbs of the problem description and uses
them as the names of classes, operations,
attributes, and nonfunctional requirements in
the model formed in ignorance.

 2002 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 70

The thingamajig snarkles the doodad.

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 68

The thingamajig snarkles the doodad.

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 68

Nouns:

Verbs:

Questions:

Exceptions:

The thingamajig snarkles the doodad.

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 68

Nouns:

Verbs:

Questions:

Exceptions:

thingamajig
doodad

snarkle

What is a thingamajig?
What is a doodad?
What is snarkling?

Can snarkling ever fail in any reason that we can check for?

The thingamajig snarkles the doodad.

doodad thingamajig <<actor>>

snarkles

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 68

The thingamajig snarkles the doodad.

doodad thingamajig <<actor>>

snarkles

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 68

dberry
Rectangle

dberry
Rectangle

dberry
Typewritten Text
Intf

dberry
Typewritten Text
Env

Encoding Ignorance

The thingamajig snarkles the doodad.

doodad thingamajig <<actor>>

snarkles

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 68

Role of the RE -3

That is, the requirements engineer is skilled
enough in modeling that he or she can take
the words of the problem description and put
them in the right places in the model, so as to
end up with an intelligible model, even though
he or she does not understand the words.

 2002 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 71

Role of the RE -4

So we operate in this way on the problem
description provided by the authors of
Sensus.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 68

Sensus Modules

Sensus has four main modules:

g Registrar — The registrar registers voters
prior to an election.

g Pollster — The pollster acts as a voters’
[sic] agent, presenting human readable
ballots to a voter, collecting the voter’s
responses to ballot questions, performing
cryptographic functions on the voter’s
behalf, obtaining necessary validations and
receipts, and delivering ballots to the ballot
box....

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 69

The pollster is the only component of the
Sensus system that voters must trust
completely; voters concerned about the
privacy of their ballots may want to install
personal copies of the pollster on trusted
machines.

g Validator — The validator ensures that only
registered voters can vote, and that only
one ballot is counted for each registered
voter.

g Tallier — The tallier tallies the results of the
election or survey. [The word “tallier”
should be read as “tally-er”.]

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 70

Registering to Vote

Before registering to vote, a voter must obtain
a voter identification number, token, and
registration address from the election
administrators.

You may begin the registration process by
running the pollster module. This is generally
done by invoking the sensus command.

The pollster module will display a menu of
options. Select the “register to vote” option.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 71

The pollster will generate a public/private key
pair for you and then prompt you for your
identification number, token, and the
registration address.

The pollster will prepare a registration request
on your behalf and submit it to the registrar. If
all goes well, the pollster will collect an
acknowledgment from the registrar within a
few seconds. Then, the pollster will prompt
you for a file name for saving your registration
information. Select a name you will
remember, as you will need to tell the pollster

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 72

the name of your registration file every time
you vote. If you are registered with more than
one election authority, make sure you store
your registration information in separate files.
All Sensus files will be stored in your .sensus
directory; if you do not have one, the pollster
will create one for you.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 73

Marking Your Ballot

Before you can mark a ballot, you must obtain
the unvoted ballot for the election and place it
in your .sensus directory. You must also be
registered to vote in that election.

Start by running the pollster module as you
did when you registered to vote.

If you would like to review the ballot before
you mark it, select “view ballot questions and
instructions” from the pollster menu.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 74

When you are ready to mark your ballot, select
“mark ballot” from the pollster menu.

The pollster will prompt you for the name of
the ballot and your registration file name.

The pollster will then display the ballot
questions one at a time along with
instructions for responding to each question.

[Why not display before, when viewing?]

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 75

If you change your mind or make a mistake
marking your ballot, you can remark your
ballot. At this time it is not possible to change
your Response to some ballot questions
without remarking your entire ballot.

When you have finished marking your ballot,
the pollster will prompt you to continue the
voting process. By answering yes at each of
the prompts, you can authorize the pollster to
complete the entire voting process on your
behalf immediately. This process usually
takes a few minutes. If you do not want to

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 76

complete the process right away, you can exit
from the pollster program and run it again
later to pick up where you left off.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 77

Class Diagram

publicKey

registration

voterId

pollster

token

ballot

voted

election

tallier

issue

registrar

voter

votingManager

<<actor>>

<<actor>>

token

pollsAreOpen

tally(issue,vote)

registrationAddress

voterId
registrationAddress

markIssue(vote)

n n
1 1

n

1

1

1

1

n

nn

1

1

1

n n

1

m nXm

1

1

1

1

1

11

1

1

1

1

1

m

1

register(voterId)

privateKey

countVotes()

vote(voterId)

1validator

Operations shown here are not
required for your domain models;
I show them to show who fields
use cases

1 n1

1

setVoted(voterId)

isRegistered(voterId)
hasVoted(voterId)

1

readIssue_sVote()

m

openPolls()
closePolls()

createBallot()

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 81

Class Diagram & World Model

1

setVoted(voterId)

isRegistered(voterId)
hasVoted(voterId)

1

readIssue_sVote()

m

openPolls()
closePolls()

createBallot()

publicKey

registration

voterId

pollster

token

ballot

voted

election

tallier

issue

registrar

voter

votingManager

<<actor>>

<<actor>>

token

pollsAreOpen

tally(issue,vote)

registrationAddress

voterId
registrationAddress

markIssue(vote)

n n
1 1

n

1

1

1

1

n

nn

1

1

1

n n

1

m nXm

1

1

1

1

1

11

1

1

1

1

1

m

1

register(voterId)

privateKey

countVotes()

vote(voterId)

1validator

Operations shown here are not
required for your domain models;
I show them to show who fields
use cases

1 n1

E

E E

S

S

S

SE

E

E

E

 2008 Daniel M. Berry Software Requirements and Specifications Classes: Concepts Pg. 82

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Rectangle

dberry
Typewritten Text

dberry
Typewritten Text

dberry
Callout
Interface

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

Scenarios and Use Cases

In the next lecture, we will develop use cases
from the scenarios given for registering to
vote and for voting.

 2001 Daniel M. Berry Software Requirements and Specifications Introduction Pg. 80

addVisitor()

1

m

TurnstileSystem n

numEntries:Integer

addCoin(denom)

numCoins(denom):Integer

*

1

11

1

1

1

1

totalVisitors():Integer

Phenomena
Shared

Interface

Software System

Environment

lock() or locked?():bool

unlock()

rotating
locked

Barrier

totalCollected():Integer

1

inserted?():integer
insert(denom)

1

inRotation?():bool

<<actor>>
Visitor

push()

denom

Coin

denom

CoinSlot

registration

voterId

pollster

token

ballot

voted

election

tallier

issue

registrar

voter

votingManager

<<actor>>

<<actor>>

token
registrationInfo

pollsAreOpen

tally(issue,vote)

registrationAddress

voterId
registrationAddress
registrationInfo
publicKey

markIssue(vote)

createBallot()

n n
1 1

n

1

1

1

1

n

nn

1

1

1

n n

1

m nXm

1

1

1

1

1

11

1

1

1

1

1

m

1

register(voterId)

openPolls()
closePolls()

privateKey

countVotes()

vote(voterId)

1validator

isRegistered(voterId)

setVoted(voterId)
hasVoted(voterId)

The operations shown here are
not required for first partial SRS;
I show them to show who fields
use cases

1 n1

1

