
Requirements Elicitation

Notes by mainly Jo Anne Atlee,
with modifications by Daniel Berry

dberry abuwaterloo⋅ca

Fall 2004

CS445/CS645/ECE451/SE463 —ELICITATION 0-0



Outline
� Most Important Aspect of RE

� Who are the stakeholders?

� Main Task — Examine Project Viability

CS445/ECE451/CS645 —ELICITATION 0-3



� Job of Requirements Analyst

– Understand problem from each stakeholder’s point of view.

� Review documentation

� Observe current system
� Questionaires and Interviews

� Apprenticeship

– Extract the essense of the stakeholders’ requirements

� Interpreting stakeholders’ descriptions of requirements

� Building models

– Invent better ways to do the user’s work

� Ask why documented requirements are desired

� Consider giving the user more creative control over his or her

� Brainstorm to invent undreamed of requirements

– Negotiate a consistent set of requirements

� Key Aspects of Requirements Negotiation

– Record results in an SRS

CS445/ECE451/CS645 —ELICITATION 0-4



� What Can Go Wrong in Elicitation and the SRS?
� Other Techniques

– PIECES

– Social and Organizational Factors

– Ethnographic Analysis

– Joint Application Design

– Names and Norms

– Gause & Weinberg Ideas

CS445/ECE451/CS645 —ELICITATION 0-5



Most Important Aspect of RE

What is the most important aspect of the requirements process?

CS445/ECE451/CS645 —ELICITATION 0-6



The two leading candidates:
� the Software Requirements Specification (SRS) document

� the process of negotiating requirements that are agreed to
by all stakeholders.

CS445/ECE451/CS645 —ELICITATION 0-7



2. Software Requirements Specification (SRS):

There’s no question that the SRS is an important output of
the requirements process. It’s the primary device for
communicating the requirements to

� the software designers and the implementers,

� the maintainers who may be asked to make changes but
who need to know whatnot to change, and

� anyone who’s new on the project team and needs a an
overview of the project

However, the success or failure of software project doesn’t
usually depend on whether its requirements are recorded in
a nicely organized SRS. It depends most often on whether
the project satisfies its requirements, whether it solves the
customer’s problem.

CS445/ECE451/CS645 —ELICITATION 0-8



1. process of negotiating requirements for an agreement
amongall stakeholders)

A lot of the SE literature talks about “eliciting
requirements” or “trawling for requirements”, as if the act
of obtaining a project’s requirements is like a fishing
expedition, as if it’s a matter of just asking the right
questions to pluck the requirements from the customer’s
head. It’s rarely as simple as that. In practice, requirements
are ill-formed and ill-understood by everyone, and it is only
by discussing and documenting the requirements, and
reviewing the documents that the stakeholders come to an
agreement about what the requirements are and are not. If
the stakeholders cannot come to an agreement, then the
project is doomed to fail.

CS445/ECE451/CS645 —ELICITATION 0-9



Elicitation and
Brainstorming

Daniel M. Berry

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 1



Definition

“to elicit”

means

“to bring out, to evoke, to call forth”

In this case, information pertaining to
requirements

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 2



Purpose of Elicitation -1

The purposes of elicitation is to get
information about:

• the domain model from which the
requirements are written

• the requirements from which system is
developed

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 3



Purpose of Elicitation -2

You must get information out of clients’ minds
without damaging the clients or their minds!

Many times this information does not come
out easily.

The clients do not know it themselves.

The clients do not want to let it out
(subconsciously).

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 4



Purpose of Elicitation -3

Elicitation is a human activity involving
interaction between human beings:

• clients
• users
• systems analysts
• systems developers

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 5



Purpose of Elicitation -4

If you cannot do the human interaction right,
you ain’t gonna be able to elicit, no matter
what technology and methods you use.

Technology and methods might help, but they
can also get in the way.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 6



Skills -1

The skills needed for elicitation are:

identifying contexts
spotting ambiguities
interviewing
brainstorming
facilitating
getting people to open up
spotting equivocation
inculcating guilt

Only the first two are not human interaction!

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 7



Skills -2

Gause and Weinberg (G&W), in Exploring
Requirements: Quality Before Design, cover a
number of techniques:

They are no replacement for the skills.

But, they do help focus those skills and give
ideas on what to do next at an impasse.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 8



Factoids:
� An error caught during requirements costs 2 orders of

magnitude less to fix than if it is caught after
implementation.

� Devoting 25% of the system development budget on
requirements reduces the cost overrun from�80% to� 5%.

The best way to avoid change requests and cost over-runs is to

� have a complete list of stakeholders,

� have a complete list of requirements from each stakeholder,
and

� ensure that the lists are consistent with one another.

CS445/ECE451/CS645 —ELICITATION 0-10



Who are the stakeholders?
� Client — person paying for the software to be developed

� Customer — person who buys software after it is developed

� Users (of both the current and future systems)

� Domain Experts — experts who know the work

� Software Engineer — technology expert

� Inspectors — experts on government and safety regulations

� Market Reseachers

� Lawyers

� Experts on Adjacent Systems

CS445/ECE451/CS645 —ELICITATION 0-11



Client — person paying for the software to be developed

This is the ultimate stakeholder. By paying for development, the
client has the last say in what the product does, how it does it,
and how elaborate or sparse it is. In some sense, by being willing
to pay for the development, the client demonstrates just how
interested he or she is in the product.

If you are developing in-house software, the client is probably
the manager of the product’s users — since his or her employees
will be the primary beneficiaries, it is reasonable for him or her
to pay for the project

If you are developing software for the mass market, then the
client may be your marketing department.

CS445/ECE451/CS645 —ELICITATION 0-12



Customer — person who buys software after it is developed

You have to understand the customer’s needs well enough to
build a product that he or she will find useful and buy. Sometimes
the customer and the user are the same; othertimes, the customer
is an office manager who buys software for his or her staff.

For what requirements will he or she pay? Which are trivial or
are excessive?

The customer should always be represented by a stakeholder who
is active on the project; if there are many customers, there needs
to be a customers’ representative.

CS445/ECE451/CS645 —ELICITATION 0-13



Users (of both the current and future systems)

These are the experts on the existing system, that tell you which
features to keep and which need improvements. Alternatively,
they could be experts on competitors’ products, and can give
suggestions about how to build a superior product. They may
have special needs or requirements to be satisfied, e.g., regarding
useability and training. You may want to consult special-interest
groups: users with disabilities, users who have computer
phobias, expert users, etc.

CS445/ECE451/CS645 —ELICITATION 0-14



Domain Experts — experts who know the work

The experts you need are familiar with the problem that the
software must solve. Examples include financial experts for
financial packages, aeronautical engineers for aircraft navigation
systems, meterologists for software that models the weather, etc.
These people can contribute to the requirements of the product
and know about kind of environment the product will be exposed
to.

CS445/ECE451/CS645 —ELICITATION 0-15



Software Engineer — technology expert

You need someone who can ensure that the project is technically
and economically feasible. You need someone who can
accurately estimate the cost and development time of the
product. You need someone who can also educate the customer
about innovative hardware or software technologies, and who can
recommend new functionality that takes advantage of these
technologies.

CS445/ECE451/CS645 —ELICITATION 0-16



Inspectors — experts on government and safety regulations

You need someone who is familiar with government and safety
regulations that might affect the project’s requirements. These
include safety inspectors, auditors, technical inspectors,
government inspectors.

Market Reseachers

A market researcher may assume the role of client, if the
software is being developed for the mass market and there is no
identifiable customer. Market researchers are experts who have
conducted surveys to determine future trends and potential
customers’ needs.

CS445/ECE451/CS645 —ELICITATION 0-17



Lawyers

You need someone familiar with legal requirements. Also
consider consulting experts on standards that are relevant to the
product.

Experts on Adjacent Systems

These experts know about the interface for the adjacent system,
and thus will know if there are any special demands for
interfacing with the product. They may also have an interest in
the product’s functionality, e.g., if the product can help the
adjacent system do its job better, by providing information it can
use.

CS445/ECE451/CS645 —ELICITATION 0-18



Main Task — Examine Project Viability

One of the first tasks is to learn enough about the project to
decide whether or not it makes good business sense to begin
doing the project. For some reason, it is very difficult to cancel a
project once it is underway. The more resources that a project has
consumed, the harder it is for it to be cancelled. Most managers
would rather stick with a dead-end project, than cancel it — even
if it is more expensive in the long run to stick with it. To cancel a
project is to admit error, which many managers are loath to do.

Ed Yourdon has written all about Death March projects.

CS445/ECE451/CS645 —ELICITATION 0-21



Determining viability requires examining the product’s:
� purpose,

� business advantage,

� costs vs. benefits,

� feasibility,

� scope,

� required resources,

� requirements constraints, and

� risks.

CS445/ECE451/CS645 —ELICITATION 0-20



Purpose

What does product do?

The product purpose is the highest-level customer requirement.
It is the business need. All other requirements must contribute in
some way to the purpose.

Business Advantage

Why build the product?

The purpose of the product should be not only to solve the
problem, but also to provide a business advantage. How will the
product help the work?

CS445/ECE451/CS645 —ELICITATION 0-21



Costs vs. Benefits

How much will the product help our work?

How much will it cost to develop and operate the product?

Naturally, if there is an advantage, you must be able to measure it
in order to demonstrate that product achieves the advantage.
Vague statements of advantage are open to mis-interpretation and
misunderstandings between what the customer thinks he or she is
going to get and what the software developer provides.

Is the advantage greater than the cost of constructing the
product? The product may offer some business advantage that
benefit the client. However, if the cost is going to be greater than
the benefit, we might as well halt the project now.

CS445/ECE451/CS645 —ELICITATION 0-22



Making this decision requires some way of estimating
� the cost of the project, and

� the benefit of the project,

in what is called a cost-benefit analysis.

CS445/ECE451/CS645 —ELICITATION 0-23



Feasibility

Feasibility analysis is concerned with

� technical feasibility and

� economic feasibility

One of the reasons for stating measureable requirements early on
is to be able to answer questions about feasibility.

Does the organization have the the skills needed to build and
operate the product? Whether or not the project is technically
feasible, it is necessary also to know if the organization has the
resources and experise to construct the product.

CS445/ECE451/CS645 —ELICITATION 0-24



Scope

Is there agreement on the product’s scope, i.e., the product’s
purpose and the system’s boundaries.

How much of the work will be done by the
system-to-be-developed?

How much of the work will be done by adjacent systems?

We need this information to be able to obtain cost and time
estimates.

CS445/ECE451/CS645 —ELICITATION 0-25



Required Resources

What are the required resources, i.e., money, time, and
personnel?

How do they compare with available money, time, and
personnel?

If the latter are smaller than the former, we should not even start
the project.

CS445/ECE451/CS645 —ELICITATION 0-26



Requirement Constraints

Are there constraints that will restrict the system’s requirements
or how these requirements are elicited?

These constraints include

� solution constraints:

– mandated designs,

– mandated adjacent systems, and

– mandated COTS (commercial off-the-shelf)
components,

� time constraints, and

� budget constraints.

CS445/ECE451/CS645 —ELICITATION 0-27



Solution Constraints
� mandated designs

Designing the solution before knowing all of the
requirements is problematic and even deplorable, but there
may be some overriding reason — marketing, cultural,
managerial, political, expectations, financial — for
accepting only one design solution, e.g., client-server arch,
must run on PC or Palm Pilot, etc.

CS445/ECE451/CS645 —ELICITATION 0-28



� mandated adjacent systems

Interfaces to adjacent systems are constraints on the
product.

� mandated COTS components

There may or may not be good reasons to insist on using
COTS. Now is the time to come to consensus about whether
using COTS is wise or even necessary.

CS445/ECE451/CS645 —ELICITATION 0-29



Time Constraints

Deadlines are sometimes imposed to meet a window of
opportunity, to coincide with coordinated releases of related
products, or to beat the release of a completing product.
Deadlines can have an effect on whether any fancy features make
their way into the product. A deadline is not the same as an
estimate of the required time. They are arrived at independently
and are based on different reasons. They may even conflict.

CS445/ECE451/CS645 —ELICITATION 0-30



Budget Constraints

The money available can affect whether certain features are
feasible. Also, it decides how much many a client is willing to
spend and can give an indication of how badly he or she wants
the product.

Risks

Are there any high-probability or high-impact risks that would
make the project infeasible?

Such risks include absense of clear purpose, little or no
agreement on requirements, unmeasureable requirements,
rapidly changing requirements, etc.

CS445/ECE451/CS645 —ELICITATION 0-31



Project Viability

To summarize:

The idea is to gather enough information to make an objective
decision as to whether or not to proceed with the project, i.e.,
whether or not to accept a project from a client or your marketing
department.

CS445/ECE451/CS645 —ELICITATION 0-32



Job of Requirements Analyst

1. Understand the problem from each stakeholder’s point of
view.

2. Extract the essense of the stakeholders’ requirements.

3. Invent better ways to do the user’s work.

4. Negotiate a consistent set of requirements.

5. Record the results in an SRS.

First some detail and then some more detail...

CS445/ECE451/CS645 —ELICITATION 0-33



Understand problem from each stakeholder’s point of view

Learn about the problem. As you work with each stakeholder, try
to understand his or her requirements and the rationale behind
them.

Extract the essense of the stakeholders’ requirements

In particular, try to see beyond each stakeholder’s description of
the requirements, which may be expressed in terms of solutions,
to the essense of the problem.

CS445/ECE451/CS645 —ELICITATION 0-34



Invent better ways to do the user’s work

The idea here is that once you have an understanding of what
work the users are trying to accomplish, you may be in a position
to suggest requirements that would help them, either because you
are aware of technology that would help them or because you
identify patterns in their work of which they are not aware.

Negotiate a consistent set of requirements

It goes without saying that the stakeholders must agree on a
single set of requirments, and that client and users agree that this
is the product that they want. The stakeholders are the ones who
will decide whether the final product is acceptable or not.

CS445/ECE451/CS645 —ELICITATION 0-35



Record results in an SRS

After all of the above is done, it is necesary to record the agreed
to requirements in a specification document, the SRS.

Now it is time to examine each of these in still greater depth.

CS445/ECE451/CS645 —ELICITATION 0-36



Popping back up to the tasks of a requirements analyst...
� Understand the problem from each stakeholder’s point

of view

� Extract the essense of the stakeholders’ requirements.

� Invent better ways to do the user’s work.

� Negotiate a consistent set of requirements.

� Record the results in an SRS.

CS445/ECE451/CS645 —ELICITATION 0-37



Understand Problem
� Why Analyze Existing System?

� Steps in Analysis:

– Review Documentation

– Observe Current System

– Questionaires and Interviews

� Apprenticeship

CS445/ECE451/CS645 —ELICITATION 0-38



'
&

$
%

Why Analyze Existing System?
� Postulating requirements from first principles?It’s often NOT the best

approach. Often there are many systems out there that are reasonably similar

to what you are trying to build.

� These “brainstorming”-type techniques are especially good for new,

unproven technologies ...

� ... but if you are building a “new & improved” version of an older system,

you must sit down and carefully analyze the old one:

! What is used, what isn’t, what’s missing.

! What works well, what doesn’t.

! How the system is used, how it was intended to be used, what new ways

we want it to be used.

CS445/ECE451/CS645 —ELICITATION 1



'
&

$
%

Why Analyze Existing System?

� Risks if you don’t:

! Users may become disillusioned with new system if it is too different or

doesn’t do what they want. Nostalgia for old system.

! Not appropriately take into account real usage patterns, human issues,

common activities, relative importance of tasks/features

! Miss obvious possible improvements (features that are missing or don’t

currently work well).

! Find out which “legacy” features can/can’t be left out.

CS445/ECE451/CS645 —ELICITATION 2



'
&

$
%

Steps in Analysis of Existing Systems

1. Review available documentation— user docs, development docs,

requirements docs, internal memos, change histories,etc.

Of course, often these are out of date, poorly written, wrong,etc., but it’s a

good starting point.

2. Observation— Go out into the field, and observe the “IT specialists in the

mist”.

Ideally, you are silent observer, at least initially. Otherwise, you risk getting

a non-standard view of what is usually done. Later on, you can start asking

questions OR interview people OR use questionnaires.

CS445/ECE451/CS645 —ELICITATION 3



'
&

$
%

3. Questionnaires— Based on what you know now, circulate some

questionnaires.

Most useful when large number of users and you want answers to specific

questions.“How often do you use feature XXX?” “What are the three

features you would most like to see?”

4. Interviews — At the end, when you have a better idea of what you will be

doing and have some good questions that requires detailed answers.

You won’t be wasting other people’s time, or your own. This is very labour

intensive!

CS445/ECE451/CS645 —ELICITATION 4



Review documentation

Review all available documentation. If there exists an automated
system, review its documented specifications and user manuals.
If the existing system is a manual system, review any
documented procedures that the workers must follow.

The goal is to gain knowledge of the system before imposing
upon other people’s time, before bothering the stakeholders.

CS445/ECE451/CS645 —ELICITATION 4-1



Observe current system

Documentation rarely describes a system completely, and it often
is not up to date. The current operation of the system may differ
significantly from what is described.

Besides, no matter how bad a reputation the existing system has
for doing the work, the system is not worthless. It contains a lot
of useful functionality that should be included in any future
system. The objectives of observing the current system is to
identify what aspects to keep and to understand the system you
are about to change.

CS445/ECE451/CS645 —ELICITATION 4-2



EXAMPLE: Here is a non-computer example of the importance
of understanding benefits of the existing system:

Hot-air hand dryers in washrooms.

Great idea! Eliminate paper waste, save trees, cleaner
washrooms.

It was not long after installing them that people discovered that
certain functions served by paper towels were not served by the
new system:

� drying one’s face

� clean up spills

� dry one’s glasses

� blow one’s nose

CS445/ECE451/CS645 —ELICITATION 4-3



Nowadays, what do you normally find in washrooms with hot-air
dryers?

Paper towel dispensers!

Perhaps if someone had spent one day in a washroom observing
how paper towels were being used, he or she would have
discovered the secondary functions that paper towels provide that
hot-air dryer do not.

When new computer systems are implemented, remnants of the
old system often linger on, because the designers of new system
overlooked a function provided by the old system.

CS445/ECE451/CS645 —ELICITATION 4-4



Questionaires and Interviews

Questionaires are useful when information has to be gathered
from a large number of people, particularly users.

Questionaires are useful also when the answers to questions need
to be compared or corroborated.
There are a couple of points about questionnaires and interviews
I want to stress.

� interview all stakeholders

A common mistake is to interview only the client and the
user and to neglect the other stakeholders, who may have
definite views about what the system should do.

CS445/ECE451/CS645 —ELICITATION 4-5



� ask problem-oriented questions

If questions are too detailed and are solution specific, they
may miss the user’s real requirements.

For example, consider a camera sales clerk asking questions
of novice photographer,

“Do you want shutter, aperture priority features, or both?”

vs.

“Will you be taking action shots, still pictures, or both?”

CS445/ECE451/CS645 —ELICITATION 4-6



� interview groups of people together to get synergy.

Users cannot think of everything they need when asked
individually, but will recall more requirements when they
hear others’ needs. This interaction is called synergy, the
effect by which group responses outperform the sum of the
individuals’ responses.

For example, suppose I ask one person in the class to recall
10 good jokes.

“Justin, tell us 10 good jokes.”

Most people, other than expert comedians or total hams,
would freeze, possibly not able to tell even one joke.

CS445/ECE451/CS645 —ELICITATION 4-7



Suppose instead, I invited the entire class to participate, and
I got the ball rolling by telling a couple of jokes myself. My
jokes would likely stimulate your memories, and your
followup jokes would stimulate your memories further and
help each of you to recall many more jokes. Together, we’d
have close to 100 jokes in an hour. And most of you will
have heard maybe 80% of them before. Most people know
lots of jokes, but cannot recall them easily when
individually asked to.

CS445/ECE451/CS645 —ELICITATION 4-8



'
&

$
%

Common Interviewing Mistakes

As this is labour and time intensive (and therefore costly), you don’t want to

diddle about. These are the four most common mistakes:

1. Not interviewing all of the right people.

Different stakeholders have different points of view. Be careful to talk to

everyone appropriate.

2. Asking direct questions too early.

e.g., Designing a transportation system:

! How many horsepower do you need? (direct)

! How many people? How far? How fast? (indirect)

e.g., Camera design for novice photographer:

! How important is control over shutter speed and aperture? (direct)

! Will you be taking action shots, still shots, or both? (indirect)

CS445/ECE451/CS645 —ELICITATION 5



'
&

$
%

3. Interviewing one-at-a-time instead of in small groups.

More people might help get juices flowing as in brainstorming. Also reduces

spotlight on individuals, so you may get more interesting answers.

4. Assuming that stated needs are exactly correct.

Often users don’t know exactly what they want and order “what he’s eating”.

Need to narrow what is asked for down to what is needed.

CS445/ECE451/CS645 —ELICITATION 6



'
&

$
%

How to get Started Asking Questions

Detailed questions will be system specific. However, Weinberg suggests starting

out withcontext-free questionsto narrow the scope a bit.

! Identify customers, goals, and benefits:

� Who is (really) behind the request for the system?

� Who will use the system? Willingly?

� What is the potential economic benefit from a successful solution?

� Is a (pre-existing) solution available from another source?

! When do you need it by?

� Can you prioritize your needs?

� What are your time/cost/manpower constraints?

� Expected milestones? (with checklists)

CS445/ECE451/CS645 —ELICITATION 7



'
&

$
%

! Try to characterize the problem and its solution

� What would be a “good” solution to the problem?

� What problems is the system trying to address?

� In what environment will the system be used?

� Any special performance issues?

Other special constraints?

� What is (un)likely to change? Future evolution? What needs to be

flexible (vs.quick & dirty) ?

CS445/ECE451/CS645 —ELICITATION 8



'
&

$
%

! Calibration and tracking questions
� Are you the right person to answer these questions?

� Are your answers “official”?

If not, whose are?

� Are these questions relevant to the problem as you see it?

� Are there too many questions?

Is this the correct level of detail?

� Is there anyone else I should talk to?

� Is there anything else I should be asking you? Have you told me everything

you know about the problem?

CS445/ECE451/CS645 —ELICITATION 9



'
&

$
%

! Unaskable questions (ask indirectly)

� Are you opposed to the system?

� Are you trying to obstruct/delay the system?

� Are you trying to create a more important role for yourself?

� Do you feel threatened by the proposed system?

� Are you trying to protect your job?

Is your job threatened by the new system?

Is anyone else’s?

CS445/ECE451/CS645 —ELICITATION 10



Apprenticeship

Apprenticing is a wonderful way to observe the real work.
Apprenticing is based on the idea of masters and apprentices. In
this case, the RA is the apprentice and the user is the master
craftsman. The apprentice sits with the master craftsman to learn
the job by observation, asking questions, doing some of the job
under the master’s supervision.

CS445/ECE451/CS645 —ELICITATION 10-1



Almost anybody is good at explaining what he or she is doing
while doing it. If the user is doing this job in the normal
workplace, he or she can provide a running commentary and
provide details that may otherwise be lost. It is probablyonly
while working that the user can

� describe the task precisely,

� explain why the task is done this way, and

� list the exceptions that can occur.

CS445/ECE451/CS645 —ELICITATION 10-2



Popping back up to the tasks of a requirements analyst...
� Understand the problem from each stakeholder’s point of

view.

� Extract the essense of the stakeholders’ requirements

� Invent better ways to do the user’s work.

� Negotiate a consistent set of requirements.

� Record the results in an SRS.

CS445/ECE451/CS645 —ELICITATION 10-3



Extract Essense of Problem

Extracting the essence of the stakeholders’ requirements requires

� interpreting the stakeholders’ descriptions of requirements
and

� building models

Interpreting stakeholders’ descriptions of requirements

The stakeholders’ descriptions ofsomeof their requirements
must be treated as factual. After all, they are the experts on their
own needs. The user is the expert on what work he or she needs
to do. However, some descriptions are too solution oriented or
are based on current technology. The requirements analyst needs
to see beyond these details to the essential problem that needs to
be solved.

CS445/ECE451/CS645 —ELICITATION 10-4



As an example this sort of interpretation, Jo Atlee received an
e-mail message from a student from a previous term’s CS445
class. He is on co-op, working as a requirements analyst. He had
just come from a meeting with his project’s client, in which the
client listed a number of required “features” of the product. Here
is a sample of those features. I don’t know what the system is
that they are building, but even not knowing this, you can tell that
some of these are not requirements.

CS445/ECE451/CS645 —ELICITATION 10-5



1. distributed service; distribution hidden from user
2. fault detection
3. objects (records) are uniquely identified
4. security
5. relationships between entities are XXX
6. mandatory adjacent/component system
7. system load shall be low

Which of these are requirements?

Which of these allude to requirements?

Which are design constraints?

Apply the same questions to the attempted requirement
statements on the next page.

CS445/ECE451/CS645 —ELICITATION 10-6



1. The client daemon must be invisible to the user.

2. The system should provide automatic verification of
corrupted links or outdated data.

3. An internal naming convention should insure that records
are unique.

4. Communication between the database and server should be
encrypted.

5. Relationships may exist between title groups [a type of
record in the database].

6. Files should be organizable into groups of file
dependencies.

7. The system must interface with an Oracle database.

8. The system must handle 50,000 users concurrently.

CS445/ECE451/CS645 —ELICITATION 10-7



Building models

Building models helps you to understand the problem, because
you cannot build a model without understanding the subject of
the model.

An obvious benefit of building models of the problem is finding
out what questions to ask. Holes in the model reveal unknown or
ambigous behaviour that need to be resolved by asking the user.
As the model develops, it becomes more and more obvious what
you don’t know, and sometimes also what the users don’t know.
Model building, thus, helps the requirements analyst to focus his
or her efforts.

CS445/ECE451/CS645 —ELICITATION 10-8



When the model is finished, you have understood the problem,
and you have a description of the problem documented in a
notation that can be read by both you and the user.

CS445/ECE451/CS645 —ELICITATION 10-9



Popping back up to the tasks of a requirements analyst...
� Understand the problem from each stakeholder’s point of

view.

� Extract the essense of the stakeholders’ requirements.

� Invent better ways to do the user’s work

� Negotiate a consistent set of requirements.

� Record the results in an SRS.

CS445/ECE451/CS645 —ELICITATION 10-10



Invent a Better Way

This task is often overlooked during requirements elicitation. We
recognize the importance of determining what the client wants
and documenting that. If we stop there, then we’re likely to build
a system that conforms to only the client’s limited notion of what
is possible. However, where does the client get his or her ideas?
He or she might want to automate the processes that are currently
done manually. Alternatively, he or she might want a system that
is similar to another existing system. However, is automating
current processes or duplicating an existing system going to
really help the client?

CS445/ECE451/CS645 —ELICITATION 10-11



To be really successful, you need to give the client, not what he
or she wants, but what he or she never dreamt of having; and
when he or she gets it, he or she recognizes it as something he or
she wanted all the time (IKIWISI).

� Ask why documented requirements are desired.

� Consider giving the user more creative control over his or
her transactions.

� Brainstorm to invent undreamed of requirements.

CS445/ECE451/CS645 —ELICITATION 10-12



Ask why documented requirements are desired

It may be that the client requested certain requirements to satisfy
some more fundamental goal, and we would be better off
concentrating on how to satisfy the more fundamental goal than
the stated requirement. Consider a customer that uses an ATM to
withdraw cash. Well,whydoes he or she want cash?

CS445/ECE451/CS645 —ELICITATION 10-13



Is it to buy something? If so, then why not extend the ATM card
to act as a debit card in retail outlets so that he or she doesn’t
have to go to the ATM in the first place.

Is it to pay her electricity bill on her way to work? If so, the why
not offer the opportunity to pay bills at the ATM.

Does he or she just want to see his or her account balance? If so,
then why not give her the facility to do this over the phone or on
the Internet?

CS445/ECE451/CS645 —ELICITATION 10-14



Consider giving the user more creative control over his or her
transactions

People would rather do some of the work themselves, if they
think they would do a better or faster job. CAD software allows
users to design their own furniture, houses. Investors trade stock
over the Internet without the advice or intervention from a broker
or trader. Shoppers are using self-scanners to scan and pay for
groceries, rather than queuing for the checkout.

CS445/ECE451/CS645 —ELICITATION 10-15



Brainstorming -1

Brainstorming is already part of our culture,
but beware of bad brainstorming.

A bad brainstorming session is a brainblizzard
because it freezes your brain, leaves you
under mounds of snow, and leaves you cold

We will give rules for brainstorming that help
avoid the brainblizzard.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 9



'
&

$
%

Brainstorming
� When you have no idea, or too many ideas, sit down and thrash it out ... but

with some ground rules.

� Most useful early on, when terrain is uncertain, or when you have little

experience, or when novelty is important.

� Who participates?

! developers, domain experts, end-users, clients, ... just about any

stakeholder can take part.

! Often, software development companies will have special-purpose

“ideas-guys”a who lead or attend these meetings, but may not participate

beyond this stage.

aCould be female or male.

CS445/ECE451/CS645 —ELICITATION 11



'
&

$
%

Brainstorming
� Want to hear ideas from everyone, especially unconventional ideas.

! keep the tone informal and non-judgemental

! keep the number of participants “reasonable”, if too many, consider a

“playoff”-type filtering. Invite back most creative to multiple sessions.

or it’s too hard to be heard (only the loud will prevail).

� Creativity to be encouraged, which means:

! Choose good, provocative project name.

! Choose good, provocative problem statement.

! Get a room w/o distractions, but with good acoustics, whiteboards,

coloured pens, provide coffee/donuts/pizza/beer

! Provide appropriate props/mock-ups (e.g.,ComfyCrate)

CS445/ECE451/CS645 —ELICITATION 12



'
&

$
%

Brainstorming

First, must designate two (different!) people for special roles:

1. Scribe — Role is to write down all ideas. May also contribute. May ask

clarifying questions during first phase, but not critical questions.

2. Moderator/leader — Two schools of thought on this:

(a) Traffic cop — enforces “rules of order”, but doesn’t throw his/her weight

around otherwise.

(b) Agent provocateur – Assumes more of a leadership role, comes prepared

with wild ideas and throws them out as discussion wanes. May also

explicitly look for variations and combinations of other suggestions. Not

a “philosopher-king”. Also acts as traffic cop.

CS445/ECE451/CS645 —ELICITATION 13



'
&

$
%

Brainstorming

Part I — The Storm

� Goal is to generate as many ideas as possible.

� Quantity, not quality, is goal at this stage.

� Look to combine or vary ideas already suggested.

� No criticism or debate is permitted. Don’t want to inhibit participants.

� Participants understand nothing they say will be held against them later on.

� Scribe write down all ideas where all can see

e.g., whiteboard, paper taped to wall

� Wild is good. Feel free to be gloriously wrong.

CS445/ECE451/CS645 —ELICITATION 14



'
&

$
%

! Participants should NOT self-censor or spend too much time wondering

if an idea is practical. Just shout it out.

! Original list does not get circulated outside of the meeting.

CS445/ECE451/CS645 —ELICITATION 15



'
&

$
%

Brainstorming

Part II — The Calm

� Go over the list. Explain ideas more carefully.

� Categorize into “maybe” and “no” by pre-agreed consensus method.

! informal consensus,50% + 1 vs.“clear majority”, Dutch auction, who

has vetoes.

� Be careful about time.

! Meetings (esp. if creative or technical in nature) tend to lose focus after

90 to 120 minutes. Take breaks or reconvene later.

� Review, consolidate, combine, clarify, expand.

� Rank the list by priority somehow; choose a winner.

CS445/ECE451/CS645 —ELICITATION 16



'
&

$
%

� Look out for:

! Haggling over details

! Hurt feelings

! Time limits

CS445/ECE451/CS645 —ELICITATION 17



Pruning -2

There are several choices of how:

voting with threshold

voting with campaign speeches

blending ideas

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 10



Voting with threshold

Each person is allowed to vote up to n times.

Keep those ideas with more than m votes.

Have multiple rounds thereof with smaller n
and m.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 11



Voting with campaign speeches

Each person is allowed to vote up to j < n
times.

Keep those ideas with at least one vote.

Have someone who did not vote for an idea
defend it for the next round.

Have multiple rounds thereof with smaller j.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 12



Blending ideas

Apply acceptance criteria (which tend to be
ignored in first step) to ideas.

Rank accepted ideas.

Select top k for voting treatment.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 13



Other Brainstorming Ideas

Brainstorming can be carried out over e-mail.

But a leader is needed to prevent flaming and
race conditions.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 14



One Final Point!

With lots of good, outrageous, outlandish
ideas, the brainstorm is loads of fun!!

Fun motivates people to do well!!!

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 15



Popping back up to the tasks of a requirements analyst...
� Understand the problem from each stakeholder’s point of

view.

� Extract the essense of the stakeholders’ requirements.

� Invent better ways to do the user’s work.

� Negotiate a consistent set of requirements

� Record the results in an SRS.

CS445/ECE451/CS645 —ELICITATION 17-1



Negotiate Consistent Set of Requirements

This negotiation is not so easy.

First, you have to detect when stakeholders’ requirements are
inconsistent.

Then, you have to convince all the stakeholders to understand the
essential requirements from the point of view of each other.

Finally, you have to come to an agreement about a consistent set
of requirements that best satisfies everyone.

CS445/ECE451/CS645 —ELICITATION 17-2



Key Aspects of Requirements Negotiation
� intended requirement — “territory”

— the real requirements, which lie in the heads of the
stakeholders

� documented requirement — “map of territory”
— model of intentions.
A good analogy is maps. If the intended requirements are
the territory, the documented requirements are a map of the
territory. The documented requirements are never as
complete as the intended requirements; they are only a
model. However, we need to try to document them, to allow
all stakeholders to discuss them and to negotiate.

CS445/ECE451/CS645 —ELICITATION 17-3



� understood requirement — “interpretation of map”
— interpretation of documented requirements.
Ideally, everyone has the same understanding of the
requirements. One of the motivations for using modelling
languages such as UML and SDL is that they are less
ambiguous than natural language and thus models written in
these languages are open to fewer interpretations than
natural language specifications.

CS445/ECE451/CS645 —ELICITATION 17-4



� significance — “fish-eye maps”
— importance of documented requirement to stakeholder.
You’ve probably seen these humorous “fish-eye view maps”
of various cities, e.g., theNew Yorker’s map of New York
City, that give exaggerated importance to the city itself and
model the rest of the country or world based on its
significance to the city. We can imagine that each
stakeholder has a fish-eye views of his or her requirements
with respect to the project’s requirements. Therefore, we
need to determine, for each stakeholder, whether a
documented requirement is one of the stakeholder’s
requirements; is the antithesis of the stakeholder’s
requirements; or is a complementary requirement, in which
case, the stakeholder doesn’t care whether or not it is
satisfied.

CS445/ECE451/CS645 —ELICITATION 17-5



� stakeholder’s counter-proposals
— “map-boundary negotiations”
How a stakeholder responds to a documented requirement,
i.e., being open-minded, close-minded, cooperative, etc.,
can indicate how open the stakeholder is to negotiation and
to coming to an agreement that optimizes all of the
stakeholders’ requirements.

CS445/ECE451/CS645 —ELICITATION 17-6



Popping back up to the tasks of a requirements analyst...
� Understand the problem from each stakeholder’s point of

view.

� Extract the essense of the stakeholders’ requirements.

� Invent better ways to do the user’s work.

� Negotiate a consistent set of requirements.

� Record the results in an SRS

CS445/ECE451/CS645 —ELICITATION 17-7



Record the results in an SRS

The last step, recording the results in an SRS, is the subject of
most of this course.

CS445/ECE451/CS645 —ELICITATION 17-8



What Can Go Wrong in Elicitation and the SRS?
� Unknown requirements

The hardest part of writing specifications involves
anticipating all of the possible circumstances that might
occur. Users expect software systems to respond correctly
to whatever input is presented. Problems occur because
there are situations that nobody considers during
development, and thus the software does not handle the
situation when it occurs.

One of the goals of modelling is to reveal circumstances
that have not been considered and reveal areas of the
problem that need to be explored more with the customer.

CS445/ECE451/CS645 —ELICITATION 17-9



� Known but undiscussed requirements (assumptions)

Assume == “ass” of “u” and “me”

� Discussed but undocumented requirements

� Wrongly documented requirements

These requirements are sometimes sabotage from users who
don’t want the system to succeed, either because they don’t
want their routines to change, or because their jobs are
threatened by the new system.

CS445/ECE451/CS645 —ELICITATION 20-11



� Inconsistent requirements

Inconsistency may arise in large systems that are organized
into parts. Decisions made for one part of the system may
not be compatible with those made for another part.
Alternatively, requirements from one stakeholder may be
incompatible with requirements from another stakeholder.

CS445/ECE451/CS645 —ELICITATION 17-11



� Misinterpreted requirements

With misinterpreted requirements, the requirements
document may be completely correct, but the implementor
may mistakenly intrepret the requirements differently.

CS445/ECE451/CS645 —ELICITATION 17-12



Other Techniques
� PIECES

� Social and Organizational Factors

� Ethnographic Analysis

� Joint Application Design

� Names and Norms

� Gause & Weinberg Ideas

CS445/ECE451/CS645 —ELICITATION 17-13



'
&

$
%

The PIECES Approach

� A more structured approach than simple brainstorming; think of as a vanilla

RE process.

� Works best with existing system or well-understood domain, but perhaps

inexperienced requirements engineers.

CS445/ECE451/CS645 —ELICITATION 18



'
&

$
%

� Main idea:

! Examine system from six specified points of view. Provides a lowest common

denominator starting point when you are not sure how to get started.

� Oriented towards office information systems (esp. enhancing/modifying

existing systems), but concepts are broadly applicable.

� PIECES== P erformance,i nformation and data,e conomy, c ontrol,

e fficiency, and s ervices.

� There is overlap between areas, but that’s OK; you’re examining different

points of view.

CS445/ECE451/CS645 —ELICITATION 19



'
&

$
%

The PIECES Approach

Performance

Usually measured as either

! throughput — number of tasks completed per unit time

! response time— avg time between request and completion of task.

For new system, identify main (and later subordinate) tasks, and query for

acceptable avg case and worst case performance. For existing systems, users will

likely know where bottlenecks are.

CS445/ECE451/CS645 —ELICITATION 20



'
&

$
%

The PIECES Approach

Information and data

Query stakeholders about:

! relevance— Is the information what you want to see? too much? too little?

! form — Is the presentation helpful? Comprehensible?

! timeliness— Are you getting the right information at the right time?

e.g., notification if inventory drops below threshold

! accessibility— Howeasyis it to get what you want to know? Too many

levels of indirection? Unintuitive structuring?

CS445/ECE451/CS645 —ELICITATION 21



'
&

$
%

The PIECES Approach

Economy

! Many systems have varying usage levels. To handle heavy periods, must

have some way of providing minimal acceptable performance. Usually, this

means spending money on pieces (e.g.,memory, processors, telephone

switches) that sit idle during off peak times.

e.g., Telephone switches have extra circuits to handle peak calling times

reasonably, but not enough to guaranteeservice.

! “Economy” means discussing the various trade-offs of costs vs.minimal

acceptable performance.

! Jargonese: Want to reduce “excess capacity” to the point that system

provides “desired service level”.

CS445/ECE451/CS645 —ELICITATION 22



For example, telephone switches have just the number of circuits
needed to be able handle the load most of the time. In North
America, the goal is to be able to provide service to 15% of the
population at any one time — at least this used to be the goal.
However, the resources needed for this level of service is
certainly not enough to serve everyone if everyone decides to
make a call at the same time, e.g., when California has an
earthquake.

The MFCF undergrad environment supposed to provide enough
resources and terminals to handle the student load most of the
time. These resources are not enough when multiple assignments
are due, e.g., during the last week of a term.

CS445/ECE451/CS645 —ELICITATION 22-1



'
&

$
%

The PIECES Approach

Control

! Who gets to do what when.

! Explicitly address which functions may be controlled by which human or

hardware or software entities.

! Particular concerns:

� exceptional circumstances, non-standard system behaviour

� system security, auditing

CS445/ECE451/CS645 —ELICITATION 23



'
&

$
%

! Too little control for users) they have lost the skill to get system to do what

they want

! Too little control for users) they get lulled into complacency, they do not

know the current state of the system, and they, therefore, are not able to

handle emergencies

! Too much control) too much hand-holding of system required, takes time

away from more important tasks; added complexity to using system; easier to

perform tasks incorrectly.

CS445/ECE451/CS645 —ELICITATION 24



Control — degrees of automation, auditing, robustness, security

Control is a general category that covers a lot of topics.

� degree of automation — how much of the work should be
automated by the system and how much should be done by
humans.

For example, telephone switching used to be done by
human operators, but nowadays, more and more operating
tasks are being automated.

� degree of auditing — degree to which the system monitors
and audits its own work; it is the ability to see, monitor, and
reconstruct system behaviour during or after an event.

For example, all financial systems audit the users’
transactions.

CS445/ECE451/CS645 —ELICITATION 24-1



� degree of robustness — degree to which the system is
responsible for detecting and correcting faults.

For example, telephone switches have a lot of code that
monitors the states of the software and hardware, and when
a weird state is detected during a call, the software will reset
that call.

� degree of security — degree to which the system controls
access to its information.

CS445/ECE451/CS645 —ELICITATION 24-2



'
&

$
%

The PIECES Approach

Efficiency

! Measurement of waste.

! Different from economy:

� Economy — intentional “waste” deemed acceptable.

� Efficiency — unintentional “waste” that no one has noticed or bothered

to improve. Usually involves reallocation of hardware or rewriting of

software.

e.g., Underused hard drive can be used to cache data from remote sites.

e.g., Naive implementation of system bottleneck is profiled and tuned.

CS445/ECE451/CS645 —ELICITATION 25



'
&

$
%

The PIECES Approach

Services

! Consider the set of services currently provided by the system in the context

of the larger problem of how the system in used.

e.g., Look at “secondary users” (clients of users). Look at the bigger

picture.

! Is there a better way to building a system to solve the big picture?

e.g., Inventory control system where entries are done by company clerk

based on requests from secondary users vs.building a Java GUI and

letting secondary users enter requests directly. If take latter approach,

what other kinds of services would you need too?

! Have to interview a wide variety of stakeholders for this to work:

e.g., users, “secondary users”, managers

CS445/ECE451/CS645 —ELICITATION 26



Exercise:

Identify and discuss how the different categories within PIECES
apply in the following two situations. If additional information is
required to more accurately pinpoint the problem, discuss this
also.

CS445/ECE451/CS645 —ELICITATION 26-1



1. Employees are gaining unauthorized access to payroll
information.

� I: information accessibility
� I & C: control accessibility

� C: degree of automation?
perhaps access to information shouldn’t be automated?

� C: auditing?
perhaps more auditing will catch the problem

CS445/ECE451/CS645 —ELICITATION 26-2



2. Poorly constructed products are getting past quality control
and being shipped to customer.

� I: is relevant information accessible?
� I: is information available in time to make decision?

� C: control over construction increased?

� C: more auditing of quality?

� C: can quality problems be detected automatically?

� E & E: less emphasis on economy and efficiency, if
they affect the effectiveness of quality control

� etc.

CS445/ECE451/CS645 —ELICITATION 26-3



'
&

$
%

Social and Organizational Factors

“No system is an island unto itself”.

� All software systems exist and are used within a particularcontext. —

technical AND social

� Social and organizational factors are not only important, often they dominate

the system requirements!

� Determining what these are can be difficult and time-consuming

– developers are (usually) outsiders

– people don’t always tell the truth

– awareness of one’s own “culture” can be hard

� No universal way to deal with this problem, just common sense.

CS445/ECE451/CS645 —ELICITATION 27



'
&

$
%

Social and Organizational Factors

These factors tend to cut across all aspects of the system:

e.g., a system that allows senior managers to access information directly without

going through middle managers

� interface must be simple enough for senior managers to be able to use

� middle managers may feel threatened or encroached upon, be resistant to

new system

� lower-level users may concentrate on activities that impress senior

managers, which is not necessarily what theyoughtto be doing

� users may not like “random spot checks”; may devise ways of hiding what

they’re doing

CS445/ECE451/CS645 —ELICITATION 28



'
&

$
%

Ethnographic Analysis

Basically, an attempt to discover the social/human factors is a system.

� Rationale:

! studies have shown that work is often richer and more complex than

suggested by simple system models derived by interviews alone.

� a specially-trained “social scientist” spends a lot of time observing and

analyzing how people actually work

CS445/ECE451/CS645 —ELICITATION 29



'
&

$
%

� discovery is by observation and analysis; workers arenot asked to explain

what they do.

� often, this is a very instructive way to discover social- and human-oriented

factors of systems.

e.g., What does a nuclear technician do all day? What does his/her workspace

look like?

� it’s less useful in discovering political factors as workers are aware of

presence of an outsider.

CS445/ECE451/CS645 —ELICITATION 30



'
&

$
%

“Focused Ethnography”a
� Sommervilleet al.were involved in a project to discover the requirements for

an air traffic control system. They spent time watching air traffic controllers
in action with an existing system.

� They made some surprising observations:

– Controllers often put aircraft onto potentially conflicting flight paths with
the intention to correct them later.

– Existing system raises an audible warning when any conflict possible.

– Controllers turned the buzzer off, because they were annoyed by the

constant “spurious” warnings.

Wrong moral: Controllers don’t like audible warnings since they turn them

off.

More accurate observation: Controllers don’t like to be treated like idiots.
aSommerville Chapter 5.4

CS445/ECE451/CS645 —ELICITATION 31



'
&

$
%

“Focused Ethnography”
� Sommerville’s approach was to combine ethnography with prototyping.

Prototyping allowed focusing on questions of “why”.

! often, the “obvious” answer was not the correct one

� One problem: ethnography concentrates on modelling existing practice

– sometimes, practices are no longer necessary, but old habits die hard

– people may not remember why something is done a particular way

! might be OK (and a good idea) to remove

! users might like (or depend on) legacy features

! might cause disaster (in unusual circumstances) to remove

CS445/ECE451/CS645 —ELICITATION 32



'
&

$
%

Ethnography: Summary

� Social/human/political factors often extremely important.

� More study (and real-world examples) needed!

� It ain’t science, but we still have to deal with these problems somehow.

� This is yet another example of how the human/social side of computer use

has received inadequate attention.

[Cue violin music]

CS445/ECE451/CS645 —ELICITATION 33



'
&

$
%

JAD — Joint Application Design
� Developed at IBM in the 1970s;

lots of success stories.

� Think of as “structured brainstorming”, IBM-style.full of structure, defined

roles, forms to be filled out, TLAs

� Two major “steps”, three phases each, and six (human) roles to be played!

� Four main tenets of JAD:

1. Effective use of group dynamics.facilitated and directed group sessions

to get common understanding and universal buy-in

2. Use of visual aids.to enhance understanding,e.g.,props, prepared

diagrams

3. Defined process. i.e.,not a random hodgepodge

4. Standardized forms for documenting results.LCD approach

CS445/ECE451/CS645 —ELICITATION 34



'
&

$
%

JAD — Overview
� Two main steps:

1. JAD/Plan — used for elicitation (brainstorming).

2. JAD/Design— used to design software

(we won’t discuss it).

� Three phases of each step:

1. Customization— Preparing for meeting

2. Session— the meeting itself

3. Wrap-up — reporting and summarizing what happened

CS445/ECE451/CS645 —ELICITATION 35



'
&

$
%

JAD — Roles

Six roles:

1. Session leader— organizer; facilitator; JAD expert; good with people skills;

enthusiastic; sets tone of meeting.

2. Analyst — scribe++; produces official JAD documents; experienced

developer who understands the “big picture”; good

philosopher/writer/organizer.

3. Executive sponsor— manager who has ultimate responsibility for product

being built; provides “strategic insights” into company’s high-level

goals/practices; later on, makes “executive decisions” as required.

CS445/ECE451/CS645 —ELICITATION 36



'
&

$
%

JAD — Roles

4. User representatives— selection of knowledgeable end-users and

managers; come well-prepared with suggestions and ideas of needs; will

brainstorm for new or refined ideas; eventually review completed JAD

documents.

5. Information system representative— technical expert on ISs; helps users

think big, know what’s easy/hard/cheap/expensive; mostly there to provide

information rather than make decisions.

6. Specialist— technical expert on particular narrow topic,e.g.,security,

application domain (travel agencies), law, UI issues.

CS445/ECE451/CS645 —ELICITATION 37



'
&

$
%

JAD/Plan — Stages

1. Customization

! Good preparation is key; JAD session willnot be just an informal

free-flow of ideas.

! Executive sponsor picks participants. Likely conducts brief orientation of

JAD structure for each.

! Session leader and executive sponsor familiarize themselves with

problem/clients/subject area.

Identify likely points of contention, and clarify what is to be

within/outside the scope of the JAD session.

! Prepare materials for session.

e.g.,flip charts, Powerpoint slides, markers/whiteboards, order pizza,etc.

CS445/ECE451/CS645 —ELICITATION 38



'
&

$
%

JAD/Plan — Stages

2. Session

! Session leader welcomes participants, presents task to be discussed,

established ground rules and context for discussion,What is on/off topic,

makes initial suggestions.

! The ball is now rolling. Brainstorm away.

! At end of session, evaluate suggestions and agree upon

recommendations/requirements to be passed to JAD/Design team.

3. Wrap-up

! Analysts write up what has been agreed upon using standardized JAD

forms. Annotate recommendations with “rationale”.

! All participants review the documents. Changes are made as needed.

Executive sponsor signs off. QED.

CS445/ECE451/CS645 —ELICITATION 39



Other Elicitation Concepts

Here are some twists of G&W concepts that
G&W did not think of, but I thought of when
reading G&W.

They concern:

• norms
• mockups & prototypes
• existence assumption
• right-brain methods
• naming

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 17



Norms -1

The general form of the use of a norm to state
requirements:

Here is an X; build a better X

The norm can protect you from colossal
blunders by starting with something that is
clearly feasible.

But, it can keep you from seeing a new way to
solve the problem that X, itself, is solving by
keeping you immersed in enhancing X.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 18



Norms -2

Here’s an example of such a norm:

“Build a better pencil-and-paper set” could
prevent you from thinking of the computer as
an authoring tool.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 19



Norms -3

Another example:

Avocado is a fruit.

Problem: peel avocado.

Thinking of the norm of fruit causes you to try
to peel avocado with knife.

Wotta mess!

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 20



Norms -4

A better solution is to scoop the avocado meat
out of the peel-shell with a spoon just the right
size.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 21



Mockup & Prototype -1

Another danger of using a norm is that
different people’s perception of the norm may
be different.

Making a mockup or prototype makes sure
that all people use the same norm.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 22



Mockup & Prototype -2

Mockups & prototypes are also used when no
norm is possible, when solving an entirely
different problem.

Mockups & prototypes are also used to elicit a
credible validation response.

You believe a “Yes, this is what I want.” in
response to a mockup or prototype more than
you do to a DoD-standard written
requirements document.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 23



Existence assumption -1

Underlying the whole search for a solution is
the assumption that a solution exists.

Generally this assumption is tacitly accepted.

Usually this is just fine.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 24



Existence assumption -2

People have a good sense of when a problem
is solvable and when it is not.

But, sometimes it is necessary to examine the
existence assumption and verify that it is
reasonable.

If the assumption is not reasonable, then
maybe the problem has to be changed.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 25



Existence assumption -3

Example:

Situation: I bought rim-mounted woks and
used them for years over a gas stove.

Then I moved to an electric stove.

The woks never got hot enough to make the
food right; the food came out greasy.

The first attempt to state the problem: Make an
electric burner hot enough to heat a rim-
mounted wok.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 26



Existence assumption -4

A solution to this problem does not exist,
because so hot a burner will damage itself and
the rim.

Finally, I realized that the solution was to
change the shape of the wok so that the
cooking surface is completely on the burner.

So I went out and bought a flat-bottomed wok!

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 27



Right-Brain Methods -1

G&W discuss a number of right-brain methods
to help overcome communicational
ambiguities.

The left brain is the more textual, logical half.

The right brain is the more pictorial, free
associating half.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 28



Right-Brain Methods -2

When you do not understand someone, ask
him or her to draw a diagram showing his or
her meaning.

Or, draw your conception of what he or she is
saying and ask if this is what he or she means

This is sort of like what was done using the
holodeck on Star Trek, the Next Generation
episode “Schisms”.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 29



Naming -1

What’s in a name? A rose by any other name
would smell as sweet!

Ah, but if the rose were not visible or
smellable and someone asked you if you
wanted a vered would you answer “yes” as
quickly as you might if you were asked if you
wanted a rose?

“Vered” is Hebrew for “rose”.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 30



Naming -2

What if you were asked if you wanted a
qwiddlyhop?

G&W show how a bad name can distract a
project and how a good name can be an
inspiration to all that work with it.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 31



Naming -3

G&W discuss how an inaccurate name can
mislead those who perceive it and cause
clashes when confronting the real thing.

So, it is worth taking time out to brainstorm
for a good name.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 32



Naming -4

Be careful with backcronyms

A backcronym is clever name that is made
after the fact, an acronym for a contrived
sequence of words.

Those words may not accurately describe the
project, and may eventually mislead
newcomers, clients, and users.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 33



Naming -5

Getting the right name is like getting the right
norm.

“Post-its” suggests better uses than does
“half-sticky adhesive”.

“Scoop out meat of avocado” suggests a
better solution than “peel off skin of avocado”.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 34



Words

A picture is worth a thousand words.

One word is worth a thousand pictures.

That word is an abstraction of the thousand
pictures, and of the million words that are
worth the pictures.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 35



Purpose of Elicitation

Basically, the purpose of elicitation is to
clarify

• functions
• attributes
• constraints
• preferences
• expectations

for the system to be built.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 36



Clarifying -1

We now look at what information needs to be
elicited.

Basically, it gets down to determining the
users’ and the client’s expectations.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 37



Clarifying -2

To get a precise idea of these expectations,
G&W recommend elicitation of

functions,
attributes,
constraints,
preferences,
expectations.

For each, G&W recommend a brainstorm
involving all parties with a stake in the
requirements.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 38



Functions

Functions are what the product does.

A function should be a phrase beginning with
a verb whose subject is the product to be
built.

KWIC accepts ordered list of lines: OK
refer accepts imprecise citations: OK
refer is fast: NOT OK (attribute)

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 39



Attributes

Attributes are product characteristics desired
by the client.

They are adjectives or adverbs.

Two products with nearly identical function
are distinguished by their attributes.

Rolls Royce and Volkswagen have mostly the
same functions but differ greatly in attributes.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 40



Constraints

A constraint is a mandatory condition placed
on an attribute.

In order for the final design to be acceptable,
every constraint must be satisfied.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 41



Preferences -1

A preference is a desirable, but optional,
condition placed on any attribute.

Any final design that satisfies all constraints
is acceptable, but some acceptable designs
are preferable to others.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 42



Preferences -2

Preferences allow designers to compare
acceptable solutions and choose the better
ones.

“After we have met all constraints we’ll take all
preferences we can get, so long as we don’t
have to pay for them!”

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 43



Preferences -3

Preferences come from the questions to which
the client answers, “I dunno!”

Since he or she doesn’t have a real answer, it
cannot be a requirement, but it is a variable.

Some choice must be made somewhere along
the line.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 44



Expectations -4

The client, just as anyone else, has
expectations.

The difference ’twixt disappointment and
delight over a product is how well
expectations are matched upon delivery of the
product.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 45



Expectations -5

Sometimes, a client’s expectations are too
high.

Perhaps, the client has developed
unreasonable expectations for the product
from having seen other products or movies.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 46



Expectations -6

Perhaps, the client has not read the fine print.

Actually, there should be no fine print; if there
is, you, the requirements engineer, have not
done your job.

It is your job to limit the client’s expectations
to something reasonable.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 47



Expectations -7

Reasons to limit expectations:

If all prior steps were done perfectly,
expectation limitation would be redundant, but

• people are not perfect,
• people are not logical,
• people perceive things differently,
• designers are people too.

 2001 Daniel M. Berry Software Requirements Enginering Elicitation & Brainstorming Pg. 48




